943576

Document 10 – Part 1

Expert Report of Konrad J. Banaszak, Genesis Engineering & Development, dated 11/13/2014

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS, WESTERN DIVISION

)
)
)
)
)
) Case No. 13-cv-50348
)
) Senior Judge Philip Reinhard
) Magistrate Judge lain D. Johnson
)
)
)
)
)

EXPERT REPORT

OF

KONRAD J. BANASZAK, PH.D.

NOVEMBER 13, 2014

Genesis Engineering & Redevelopment 2149 Oxnard Drive Downers Grove, IL 60516

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS, WESTERN DIVISION

LAJIM, LLC, an Illinois Limited Liability)
Corporation, Prairie Ridge Golf Course,	
LLC, an Illinois Limited Liability Company,	
Lowell Beggs, and	
Martha Kai Conway,)
) Case No. 13-cv-50348
Plaintiffs,)
) Senior Judge Philip Reinhard
V.) Magistrate Judge lain D. Johnson
)
General Electric Company, a New York)
Corporation,)
)
Defendant.)

EXPERT REPORT

OF

KONRAD J. BANASZAK, PH.D.

Konrad J. Banaszak, Ph.D.

Date/

GENESIS ENGINEERING & REDEVELOPMENT

Genesis Engineering & Redevelopment 2149 Oxnard Drive Downers Grove, IL 60516

TABLE OF CONTENTS

QUALIFICATIONS		1
INFORMATION CONSIDE	ERED	1
GE Witnesses Plaintiffs' Witness Environmental Re		2 2 3
BACKGROUND		3
-	rogeology on of Contamination of Environmental Investigation	3 4 4 5
OPINIONS		6
Opinion No. 1 Opinion No. 2 Opinion No. 3 Opinion No. 4		6 10 15 16
REFERENCES		18
	<u>APPENDICES</u>	
APPENDIX A: RESU	JME	
APPENDIX B: PUBL	ICATIONS	
APPENDIX C: REPO	ORT EXHIBITS	
Exhibit 1:	Maps of the GE Plant, Prairie Ride Surrounding Area Prepared by GER	•
Exhibit 2:	Map of Geologic Features and Cros	s-sections Prepared
Exhibit 3: Illinois State Geological Survey Well Log for P Ridge Golf Course Supply Well and Video Camera from MWH's 2013 FSI Report		_

Exhibit 4: Table of TCE Data in Monitoring Well MW-105D Prepared by GER

APPENDIX D: SELECTED MATERIALS FROM GE AND IEPA REPORTS AND DOCUMENTS

- Exhibit 1: Selected Materials from Mathes' Phase I Remedial Investigation Report (dated October 1987)
- Exhibit 2: Selected Materials from Canonie's Phase II Remedial Investigation Report (dated July 1989)
- Exhibit 3: Selected Materials from Target Environmental's Soil Gas Survey Report (dated August 1989)
- Exhibit 4: Selected Materials from GeoTrans' Natural Attenuation and Groundwater Modeling Report (dated October 2001)
- Exhibit 5: Selected Materials from Appendix G of GeoTrans'
 Natural Attenuation and Groundwater Modeling Report
 (dated October 2001)
- Exhibit 6: Table of Historical Groundwater Quality Data from Hard Hat's 2007 and 2008 Annual Groundwater Modeling Report (dated May 27, 2010)
- Exhibit 7: Selected Materials from MWH's Focused Site Investigation (FSI) Report (dated April 2013)
- Exhibit 8: Selected Materials from MWH's Focused Site Investigation (FSI) Addendum Report (dated May 2014)
- Exhibit 9: MWH's Letter Responding to the IEPA's Comments on the FSI Addendum Report (dated October 24, 2014)
- Exhibit 10: Selected Materials from ARCADIS' Vapor Intrusion Sampling Report (dated May 2014)
- Exhibit 11: Waste Disposal and Chemical Purchase Matrices Included with GE's Response to the U.S. EPA's 104(e) Information Request (dated August 21, 1987)
- Exhibit 12: Map of GE Plant Showing Building #15 (GE-1) and Building #14

QUALIFICATIONS

I am Konrad J. Banaszak, Ph.D., Chief Scientist at Genesis Engineering & Redevelopment, Inc. ("GER"). I am a Licensed Professional Geologist in the State of Illinois. My resume giving the particulars of my employment history, academic history, organizational memberships, and certifications and licenses is in <u>Appendix A</u>. My publication list is in <u>Appendix B</u>.

GER charges \$250 per hour for my work with no differentiation for testimony time. Through the end of October 2014, GER has billed \$32,897.15 in relation to this case.

I have worked in the geosciences for the entirety of my 43 year full-time career. I have worked in academia, for government agencies, and for private environmental consulting firms. I have experience in hydrogeology, geochemistry, and contamination sites. I have worked on chlorinated solvent matters since my first job with the United States government. My work experience has included investigation, fate and transport analysis, and remediation of chlorinated solvents, and has occurred across the United States. My work has been in several different contexts, including related to the Comprehensive Environmental Response, Compensation and Liability Act ("CERCLA"), the Resource Conservation Recovery Act ("RCRA"), state cleanup programs, property transfers, and private cleanups.

I have testified about technical issues related to chlorinated solvents. In the last four years, I served as an expert witness in one environmental case: <u>City of Indianapolis v. Ertel Manufacturing, et al.</u>, Cause No. 49D07-0807-PL-033638, in the Marion Superior Court, (Marion County, Indiana) Civil Division No. 7. I have served as an expert witness in other environmental litigation that occurred more than 4 years ago.

INFORMATION CONSIDERED

My opinions below relate to environmental contamination at and downgradient from the former General Electric Company ("GE") Plant at 709 Wall Street in Morrison, Illinois. To form my opinions, I have considered numerous environmental regulatory documents associated with the GE Plant. The documents that I considered include (i) copies of the reports, data, correspondence and other similar materials contained in the files of the Illinois Environmental Protection Agency ("IEPA") (produced by the IEPA in response to a Freedom of Information Act request submitted in April of 2013 by the Plaintiffs' attorneys), (ii) copies of subsequent reports, data and correspondence sent to and received from the IEPA which were provided to Plaintiffs' attorneys directly by GE and its representatives pursuant to an access agreement between GE and the owner of the Prairie Ridge Golf Course and in connection with this litigation, and (iii) copies of other environmental documents produced by GE in discovery in this litigation.

I also reviewed and considered the transcripts and exhibits for the following depositions taken between July and September of 2014.

GE Witnesses

- Lewis Streeter, GE's Current Environmental Manager
- Alison Spare, GE's Current Communications Liaison
- Timothy Harrington, GE's principal environmental consultant on this matter from approximately 1987 through 2010
- Daniel Burnell, a GE environmental consultant who authored a groundwater flow modeling and natural attenuation analysis report in 2001
- Everett Pannier, Plant Manager of the GE Plant from 1995 through 2003
- Kevin Schlueter, Plant Manager of the GE Plant from 2003 through 2010
- Joseph Skaff, Environmental Coordinator of the GE Plant from approximately 1980 through 2002
- David Bond, former Head of Maintenance at the GE Plant and local point of contact for environmental issues associated with the Plant following its 2010 closing

Plaintiffs' Witnesses

- Lowell Beggs, principle member and founder of the Prairie Ridge Golf Course businesses, and a resident of a home at non-responsive just south the GE Plant
- Javier Carreno, member of the golf course businesses and head groundskeeper of the Prairie Ridge Golf Course
- Maggie Carreno, member of the golf course businesses and bookkeeper for the Prairie Ridge Golf Course
- Martha Kai Conway, member of the golf course businesses and resident of a home at non-responsive
 just south of the GE Plant
- Jeffrey Holmertz, accountant for the golf course businesses
- Gary Gehlbach, attorney for the golf course businesses

Environmental Reports

While the environmental document record for this case is voluminous, consisting of thousands of documents and hundreds of thousands of pages, the eight significant and comprehensive environmental reports are:

- <u>Phase I Remedial Investigation Report</u> (October 1987), by John Mathes & Associates, Inc. ("Mathes")
- <u>Phase II Remedial Investigation Report</u> (1989), by Canonie Environmental Services Corp. ("Canonie")
- <u>Natural Attenuation and Groundwater Modeling Report</u> (October 2001), by GeoTrans, Inc. ("GeoTrans")
- 2007 and 2008 Annual Groundwater Monitoring Report (January 27, 2010), by Hard Hat Services
- Focused Site Investigation Report (April 2013), by MHW Americas, Inc. ("MWH")
- Focused Site Investigation Addendum (May 2014), by MWH
- <u>Vapor Intrusion Investigation Summary Report</u> (March 2013), by ARCADIS U.S., Inc. ("ARCADIS")
- Vapor Intrusion Sampling Report (May 2014), by ARCADIS

BACKGROUND

A brief summary of background information, based on review of the documents described above, is given below. (A map showing the GE Plant, the Prairie Ridge Golf Course, Rock Creek, and surrounding area is included as Appendix C, Exhibit 1.)

Site Description

The GE Plant operated for several decades before closing in 2010. GE manufactured appliance parts, using chlorinated solvents as part of its manufacturing process. Three degreasing areas were reported by GE and described by GE personnel at the GE Plant. Two degreasers were in Building GE-1 (the main building, also called Building #15) on Wall Street. The two degreasers were referred to by GE personnel as the "guardette" degreaser (in the center of Building GE-1) and the "fabrication" degreaser (in the western portion of Building GE-1). Another degreaser in a capillary tubing manufacturing area apparently operated in Building #14, which is located just northeast of Building GE-1. (See Appendix D, Exhibit 12 for a map showing the building locations.) GE used the chlorinated solvent trichloroethene ("TCE") up until the 1970s, and the chlorinated solvent 1,1,1-trichloroethane ("TCA") up until 1994. Records also

show that the GE Plant purchased and disposed of another chlorinated solvent perchloroethene ("PCE") in the 1970s. TCE, TCA, PCE, and other chlorinated compounds such as 1,2-dichloroethene ("1,2-DCE") and 1,2-dichloroethane ("1,2-DCA") have been found in samples of soil, soil gas, groundwater, and indoor air collected on and downgradient from the Plant property.

Geology and Hydrogeology

At the GE Plant and under ridges and topographically high locations nearby, silty clay with some sand generally overlies fractured carbonate rock, which in turn overlies the Maquoketa shale, which in turn overlies deeper carbonate rock. Within the topographic valley which contains the course of Rock Creek, mainly sand, gravel, clay, and silt overlie the shallower fractured carbonates. Rock Creek is not aligned with axis of the bedrock valley. (See Appendix C, Exhibit 2 for maps and cross-sections). That is, the deepest parts of the bedrock valley do not consistently underlie Rock Creek. Groundwater flows horizontally generally southward through the uppermost unconsolidated materials and in the uppermost carbonates. There also is groundwater flow in deeper rocks. Some vertical groundwater flow occurred, and may continue to occur, through the shale and into the deeper rocks, either naturally, or through conduits such as abandoned and defective wells. The rocks beneath the Maquoketa shale were tapped by the City of Morrison for the municipal drinking water supply, and chlorinated solvent contamination was found in the City of Morrison's wells.

General Description of Contamination

The geology and hydrogeology have enabled contaminants released on the GE Plant property to migrate to other properties south of the plant and into wells used by the Prairie Ridge Golf Course. Chlorinated solvent contamination has been found in soil, groundwater, and soil gas on the GE Plant property. Chlorinated solvent contamination has been found in groundwater sampled from monitoring wells and supply wells on the Prairie Ridge Golf Course. Chlorinated solvents have been found in soil gas underneath homes in a residential area south of the GE plant and under the Prairie Ridge Golf Course clubhouse. Chlorinated solvents have been found in indoor air samples in homes in the residential area south of the GE plant and in the Prairie Ridge Golf Course clubhouse. Significantly elevated concentrations of TCE, measured in the hundreds and thousands of micrograms per liter ("ug/l"), far exceeding the 5 ug/l Maximum Contamination Level (the "MCL" or the regulatory standard) for TCE, were found recently in groundwater samples collected from monitoring wells and from the north supply well on the Prairie Ridge Golf Course, downgradient from contaminated areas of the GE Plant. TCE was also detected in a groundwater sample from the south supply well, which is south of Rock Creek on the Prairie Ridge Golf Course.

Brief Chronology of Environmental Investigation Work

Below is a brief summary of some of the more significant environmental investigation events and activities between 1986 and 2014:

- 1986: TCE at concentrations above the MCL was discovered in groundwater samples collected from the City of Morrison supply wells.
- 1987: Environmental consultant Mathes reported to the IEPA the results of its initial investigation. Mathes recommended that additional investigation work be performed to interpret hydrogeologic conditions and evaluate potential source areas and migration pathways.
- 1988: City of Morrison Wells 1 and 2 were closed. GE's environmental consultant Canonie designed and the City began to operate a system to treat water from City Well 3.
- 1989: Canonie conducted an investigation to follow up on the Mathes work. Canonie concluded in its report that "the 'industrial complex' is not a source of VOCs to the unconfined aquifer" and "no further attempts to define sources in the industrial complex are recommended." Nevertheless, Canonie recommended that a soil gas survey focused on chlorinated solvent contamination be performed under Building GE-1, the main building where two degreasers were located. (The "industrial complex" is an area on the west side of the City of Morrison that includes the GE Plant. VOCs stands for volatile organic compounds, which is a group of chemicals that includes chlorinated solvents.)
- 1989: Target Environmental conducted a soil gas investigation at the locations of the two degreasers in Building GE-1. TCE, TCA, and other chlorinated compounds, were found in soil gas at the locations of both degreasers.
- 1990s: Throughout the 1990s, GE and its environmental consultants did not investigate further the sources of contamination (that is, the degreasers). No soil or groundwater samples were collected at or next to the locations of the degreasers. GE and its environmental consultants conducted monitoring of selected groundwater wells.
- 1996: GE developed a Request for Proposal ("RFP") for Hydrogeologic Consulting Services.
- 1999: GE retained GeoTrans, who responded to the RFP, to conduct a groundwater modeling and natural attenuation analysis. Drilling five soil borings in Building GE-1 at the locations of the two mentioned degreasers was included in GeoTrans' August 24, 1999 proposal for hydrogeologic consulting services.

- 2001: GeoTrans issued a report concluding that groundwater contamination was not flowing beyond Rock Creek, and that the contamination in the groundwater will naturally attenuate and reach MCLs. GeoTrans never did the source investigation it proposed. There were no soil borings placed to investigate the contamination at the location of the degreasers.
- 2002: The IEPA commented on the GeoTrans report identifying among other things
 the lack of a reliable well survey, the need to investigate the potential presence of
 dense nonaqueous phase liquid ("DNAPL"), and the need to perform a pump
 (aquifer) test on City Well 3 (originally recommended by Canonie in 1989, and
 characterized as an activity that GE was "willing to perform" once again by
 Harrington in 2002). For the next decade, none of this work was performed.
- 2001 2011: For the period of time from the GeoTrans report to the entering of the 2010 Consent Order between GE and the State of Illinois, GE and its environmental consultants conducted periodic groundwater monitoring. There was no field effort to investigate the contamination at the location of the degreasers or perform a reliable well survey.
- 2007: Lowell Beggs purchased the Prairie Ridge Golf Course.
- 2010: A groundwater well restriction ordinance was enacted by the City of Morrison.
 The north and south supply wells on the golf course are not in the City of Morrison and are not covered by the ordinance.
- 2011 2014: During this period of time, GE utilized different environmental consulting firms MWH and ARCADIS. A reliable well survey was performed which led to the "discovery" of two water supply wells on the golf course. Soil borings were performed inside Building GE-1 at the locations of the two degreasers and the location of former storage tanks, confirming the release of chlorinated solvents at these locations. Additional groundwater investigation work was performed, including the installation and sampling of several new monitoring wells on the golf course. Groundwater samples from the north and south supply wells on the golf course were collected and tested by GE.

OPINIONS

Opinion No. 1

Following the discovery of contamination in the City of Morrison, the environmental response work performed by GE and its environmental consultants did not conform to standard practice in the environmental industry. GE and its environmental consultants neglected for years to characterize sources, perform a reliable well survey, and define the extent of groundwater contamination.

After chlorinated solvent contamination was found in 1986 in the City of Morrison's municipal supply wells, and after the subsequent discovery of contamination at and downgradient from the GE plant property as reported by Mathes in 1987, GE failed to conduct two fundamental investigation activities. The two omissions from standard practice were (i) source identification and characterization, and (ii) identification of potential exposure points to chemicals that could have migrated from the GE plant, that is, a reliable well survey. Neither of these activities was done expeditiously. The performance of these activities was not accomplished between the time of the Mathes report in 1987 until recently in 2012, which shows the extent to which GE and its environmental consultants varied from standard industry practice.

A third deviation from standard practice was the failure to determine the extent of contamination. While the full delineation of contamination may take years, GE and its environmental consultants have not yet accomplished this 27 years later. They most notably have neglected to find clean groundwater underneath contaminated groundwater.

Source Investigation and Characterization. The degreasers were not investigated in a timely manner, or properly. Answers to initial questions about the conditions of the environment with respect to industrial solvents requires the location of any potential source and knowledge of what strength is associated with each source. A true understanding of what may be needed to address resulting groundwater contamination starts with that understanding. In 1987, Mathes reported levels of contamination in groundwater that indicated that the GE Plant was a source of that contamination. Additionally, the finding of chlorinated solvents in samples collected from the City of Morrison's water supply wells was reconcilable with the solvents used at the GE Plant. The 1989 Target Environmental report documented chlorinated solvents in soil gas consistent with the locations of two degreasers in Building GE-1 (the "guardette" degreaser in the center of the building and the "fabrication" degreaser in the western portion of the building). (See Appendix D, Exhibit 3) The initial concentration of TCE in a sample collected in 1987 by Mathes from monitoring well MW-105D, located near the southern boundary of the GE plant property, was 14,000 ug/l, which is 2,800 times the 5 ug/l MCL for TCE in drinking water. (See Appendix D. Exhibit 1, Figure 5-1) for the MW-105D location.) With such a high level of contamination at this monitoring well, understanding the location and strength of the source was of primary importance to understanding of potential mobilization to the groundwater, assessing the extent of the groundwater contamination, and determining any remedial effort needed to control the migration of contamination from the GE Plant.

This oversight (that is, the failure to investigate in a timely manner the degreaser sources) is especially troubling because there had been an effort to characterize a drum storage area behind and a fill area under the main building. Yet there was no similar effort at degreasers known to exist at the Plant. Degreasers are generally recognized as common sources of chlorinated solvent contamination.

And while it was a breach of basic environmental investigation standards not to investigate the degreaser sources in a timely manner, it is especially concerning given

that GE's personnel and environmental consultants knew that the degreasers were present, had the result of the Target Environmental study in 1990, and were provided with several suggestions from its environmental consultants over the years to investigate those sources. For example, in a 1999 proposal from GE's groundwater modeling consultant GeoTrans, a source investigation was recommended, but that work was never performed by GeoTrans. GE should have understood (and apparently did understand) that degreasers were common sources of chlorinated solvent contamination, and should have known (and apparently did know) that the degreasers should have been investigated. The three obvious potential degreaser sources (two in Building GE-1 and one in Building #14) were not investigated in a timely manner.

In 2012, GE's environmental consultant MWH drilled soil borings and sampled soil under the "gardette" and the "fabrication" degreasers in the main building (that is, the degreasers in GE-1), performing the work that was first recommended over two decades earlier. The soil results establish the presence of chlorinated solvent contamination at these locations, and leave some remaining uncertainty about the presence of free phase industrial solvents (that is, DNAPL) in the soil where sampled. The best way to look for DNAPL is by sampling the groundwater in the immediate areas of the degreaser footprints. No such groundwater samples were collected. Additionally, the degreaser associated with copper tubing production (that is, the degreaser in Building #14) was not and still has not been investigated, nor has it ever been established that the degreasing activity at this location never used chlorinated solvents.

<u>No Reliable Well Survey.</u> A reliable well survey was not performed until 2012, more than two decades after the discovery of contamination. In 1987, after the Mathes "Phase I" investigation, GE had knowledge that elevated concentrations of TCE, TCA, and other chlorinated compounds were measured in groundwater samples collected by Mathes immediately downgradient from the GE Plant. Since 1986, GE had knowledge of the results from the testing of groundwater samples from the City of Morrison's supply wells. GE should have initiated a comprehensive and thorough survey to find all water supply wells that may have been impacted by contamination from the GE Plant after seeing the Mathes report. GE's next obvious opportunity to perform a reliable well survey was the "Phase II" investigation. A comprehensive and thorough survey to find all water supply wells should have been a part of the work performed by Canonie for its 1989 report.

The Mathes report did contain a list of eight wells that Mathes found in and around the City of Morrison. The first two wells listed in Table 2-2 of that report are approximately 4,500 feet southwest of the GE Plant, and southwest of the City of Morrison Wells 1, 2, and 3. The other six wells identified by Mathes are located west or north of the GE Plant in a direction that groundwater flow likely would not carry contamination to them. (See Appendix D, Exhibit 1 for Table 2-2.)

GE's environmental consultant Harrington did obtain well records in the late 1990s, which were reported in GeoTrans' 2001 report. A map showing the locations of wells is presented as Figure 3-2 in that report. (See <u>Appendix D</u>, Exhibit 4.) As

explained by Mr. Harrington during his deposition, well records were requested from the Illinois State Geological Survey or Illinois State Water Survey. The well survey only considered areas outside of the limits of the City of Morrison. (Harrington Dep. 144:19-145:10.) The well survey also did not consider the Prairie Ridge Golf Course, as the survey did not include the area south of Wall Street and north of Rock Creek (that is, the Prairie Ridge Golf Course). (Harrington Dep. 144:7-18.) Finally, GE and its environmental consultants understood that the Prairie Ridge Golf Course was irrigated, but still never looked for supply wells on the golf course. (Harrington Dep. 141:24-142:18.)

Neither Mathes, nor Harrington, whose work GeoTrans incorporated, conducted two important components of a reliable water well survey: (i) a walk-about visual reconnaissance of the area of impacted groundwater, and (ii) direct outreach to home and property owners, including written communications, and a knock-on-the-door and questioning. These two steps were not performed by GE until 2012. In 2012, GE and its environmental consultant MWH, finally conducted a comprehensive and thorough well survey. As a result, GE "discovered" the supply wells on the Prairie Ridge Golf Course that had been there for years.

The failure of GE to "discover" the supply wells on the Prairie Ridge Golf Course is particularly troubling because the golf course was played by many individuals who worked at the GE Plant, including plant managers and environmental coordinators who were aware of the contamination issue. No wells on the Prairie Ridge Golf Course were identified in any GE document until 2012.

A well log from a supply well on the Prairie Ridge Golf Course is available on the Illinois State Geologic Survey webpage. It is not absolutely clear from the location information on this log whether it is for the north or the south supply well. However, the well log is generally consistent with the video inspection log included in Appendix H of MWH's 2013 FSI Report, and accordingly it is likely that this is the well log for the north supply well. (See Appendix C, Exhibit 3 for supply well log and video inspection log.) Both the north and south supply wells were on the golf course when the golf course was purchased in 2007. Regardless of the precise time of the installation of these wells, what is clear is that neither of the golf course supply wells were "discovered" by GE until 2012. From the time that contamination was originally discovered, GE should have taken efforts to ensure that new supply wells were not installed in the impacted area, and should have been routinely evaluating whether there were water supply wells in the impacted area that could have caused people to become exposed to contamination.

GE did not conduct a reliable well survey for decades. Individuals drank contaminated water from the golf course supply wells for years. Golf course employees, including Javier Carreno, drank significantly contaminated water supplied from the north supply well between the years 2007 and 2012. (J. Carreno Dep. 80:15-83:6.) TCE concentrations in samples from the north well were measured in 2012 at concentrations of 5,000 and 6,100 ug/l, at and over three orders of magnitude (or a thousand times) above the 5 ug/l MCL (the drinking water standard). These golf course employees did not stop drinking water from the north supply well until late 2012, upon

being advised by GE that the water was contaminated. Had GE done a reliable well survey at any time between November 9, 1992 (the date reported on the single well log) and mid-2007 (the time that Lowell Beggs purchased the golf course) – such as in support of the 2001 GeoTrans report – GE could have been in a position to prevent these golf course employees from being exposed to contaminated water for the five year period.

<u>Failure to Define the Extent of Groundwater Contamination</u>. A basic necessity to understand and remediate the groundwater affected is to know the extent of groundwater affected above applicable standards. For example, significant levels of TCE contamination historically have been found in the 269 foot deep well MW-1LD, and contamination remains present at this well location. (See <u>Appendix D</u>, Exhibit 7, Figure 3 for well location; see <u>Appendix D</u>, Exhibit 6 for historical data from this well.) Simply put, even at this date, GE and its environmental consultants have not defined the lateral or the vertical extent of contaminated groundwater.

Opinion No. 2

From the time of discovery of the contamination until now, the environmental response work done by GE and its environmental consultants to assess the groundwater contamination issues at and downgradient from the Morrison Plant has been flawed, inadequate, and incomplete. GE and its environmental consultants have erroneously presented the groundwater flow system and the groundwater chemistry.

The environmental response work done at the GE Plant still is not adequate to understand the environmental conditions at and downgradient from the GE plant. There are two essential elements to understanding a groundwater contamination site such as the chlorinated solvent plume at the GE Plant and downgradient area: (i) the current and historic groundwater flow and (ii) the current and historic contamination chemistry, including both concentration trends and the theory of natural attenuation put forth.

These two elements were addressed in GeoTrans' 2001 problematic groundwater modeling and natural attenuation report. The GeoTrans report and its conclusions have been embraced and defended by GE and its environmental consultants since 2001. Yet the report is fundamentally flawed and its conclusions are incorrect. First, the GeoTrans report concluded that Rock Creek is a natural hydraulic barrier that will collect contaminated groundwater originating from the GE Plant. Yet contamination was found in a groundwater sample collected south of Rock Creek in the south supply well, and where deeper contaminated groundwater flows to is still not completely known. Second, the GeoTrans report concluded that contamination will naturally attenuate, or degrade over time, at a rate that makes it unnecessary for GE to conduct any active remediation or other environmental work besides groundwater monitoring. But contamination in groundwater recently has been found at concentrations far in excess of the concentrations predicted by GeoTrans.

Groundwater Flow. GE and its environmental consultants have erroneously presented the groundwater flow characteristics and properties, and thus how contamination has migrated and continues to migrate from the GE Plant. The GeoTrans report has two major conclusions with respect to groundwater flow. First, GeoTrans concludes that groundwater flow is mainly horizontal with vertical upward flow near Rock Creek and downward flow in the "upland areas." Second, GeoTrans concludes that Rock Creek is a gaining stream (a "regional divide"), accepting groundwater flow that is contained in the contaminated upper aquifer, obviating any concern that areas south of Rock Creek will be affected by contamination from the GE Plant. In its recent 2013 and 2014 reports, MVVH has largely followed these ideas.

With respect to the basic geology of the area near the GE Plant, GeoTrans and later MWH have made fundamental errors. First, the block diagram prepared by GeoTrans (Appendix D, Exhibit 4, Figure 3-18) and the conceptual site model prepared by MWH (Appendix D. Exhibit 7, Figure 12) consistently show that Rock Creek is directly above the thickest (deepest top of bedrock) portion of valley fill. The map of bedrock topography and the course of Rock Creek and the six cross sections prepared for this report (Appendix C, Exhibit 3) show how GeoTrans and MWH incorrectly simplified the geology. Rock Creek is not aligned on top of the bedrock valley axis. Rock Creek actually flows along a bedrock ridge near City Wells 1, 2 and 3. Rock Creek also flows along the edge of the bedrock valley in the vicinity of the south supply well on the golf course. These geometries are important to surface water and groundwater flow as discussed below. Second, the fill in the bedrock valley contains a significant amount of silt and clay in addition to sand and gravel. The presence of these fine-grained layers is shown in Figures 2-3 to 2-5 of GeoTrans' report. Appendix D, Exhibit 5.) The MWH reports show a generalized clay layer approximately in the middle of the valley fill, with sand and silt above and sand below the clay with a basal conglomerate layer above the bedrock interface. (See Appendix D, Exhibit 7, Figure 13 of the 2013 FSI report, and Appendix D, Exhibit 8, Figure 5 of the 2014 Addendum report.) The importance of these units to the groundwater flow is also discussed below.

With respect to basic hydrology, the GeoTrans report is fundamentally at odds with itself. While the modeling clearly has Rock Creek gaining water from groundwater, Table 2-6 of the very same report shows significant loss of water from Rock Creek to groundwater. (See <u>Appendix D</u>, Exhibit 4 for Table 2-6; see <u>Appendix C</u>, Exhibit 1 for stream gage locations.) There are four different days of measurement in which three days show a loss from the creek to groundwater in the reach of SG-2 to SG-3 and all four days show a loss from the creek to groundwater in the reach SG-1 to SG-2. Despite this data in its own report, GeoTrans chose to model Rock Creek as gaining water from groundwater in the area modeled.

Furthermore, the variability in the sediments in the valley fill is glossed over and obfuscated in the GeoTrans flow model. The location and thickness and possible continuity of the low permeability units, clays and silts has a profound impact on the flow patterns of groundwater. The testing performed by GeoTrans largely measured horizontal permeability of the units most capable of transmitting water and not that of

the clay layer. (See <u>Appendix D</u>, Exhibit 4, Table 3-2.) The modeling performed by GeoTrans continued ignoring the clays. (See <u>Appendix D</u>, Exhibit 5, Table 4-2.) As the clay and, more cogently, bottom of clay, is found at an elevation lower than Rock Creek's bottom, groundwater below the clay is at least partially isolated from the influence of Rock Creek where the clay is present. This could easily cause large portions of groundwater to flow under Rock Creek to the south, with contamination as a result ending up on the south side of the creek. The deeper the unit, the more likely the isolation, explaining, logically, why the TCE discovered south of Rock Creek is from a well that taps the fractured upper carbonate bedrock, the south supply well of the golf course. In a losing stream environment, such as that documented by GeoTrans, underflow, that is, flow to the south of Rock Creek, becomes the expected case.

Additionally, GeoTrans chose to combine three units into a single layer, namely the uppermost layer (referred to in the GeoTrans report as Layer 1). The units in this layer were upland deposits, valley fill deposits, and uppermost weathered carbonate bedrock. (See Appendix D, Exhibit 5, Figure 4-2.) The clay in the valley fill was ignored. The clay in the valley fill is critical to understanding the flow system, especially vertical flow. In no analysis performed by GeoTrans was attention given to the presence of clays and their effect on vertical flow. This omission is most disturbing because of the position of known clays is in the valley fill, namely along and below Rock Creek. This clay location under Rock Creek, of all the reported clay locations, is the most critical to upward flow into the creek from units below the known clay. The expected permeabilities for clay are much lower than the sand and the sand and gravel units. These lithologic boundaries essentially are ignored by GeoTrans, and also by MWH.

The data available does not define the extent of contamination. The lateral extent is not known as can be seen from the failure to characterize the flow at and beyond Rock Creek. More importantly, the vertical extent of contamination has not been defined. This conclusion is easily understood, as the north and south supply wells of the Prairie Ridge Golf Course, which are in the bedrock, show the presence of TCE. This vertical problem is best exemplified by the results from the north supply well, where TCE was found in groundwater at many times the drinking water standard and is on property not owned by GE.

In sum, GeoTrans, whose analysis was followed by GE and its environmental consultants, failed to properly understand the basic geology and hydrogeology of the groundwater system in the vicinity of Rock Creek. Rock Creek is not a "regional divide" as GeoTrans and Harrington have described it. Nor is Rock Creek the location of a deeper "stagnation zone" described by MWH in its 2013 FSI Report. Rather, the data has shown that Rock Creek does not capture all of the deeper (gravel and upper bedrock) groundwater contamination.

<u>Groundwater Chemistry</u>. The postulated natural attenuation of chemicals in the groundwater is not occurring and hence natural attenuation is not occurring fast enough or over a broad enough area to be the remedial method to address the contamination. Furthermore, the results of historic chlorinated solvent testing of groundwater sampled

from monitoring well MW-105D, located just outside Building GE-1, downgradient from degreasers, meets the criteria for the potential presence of a DNAPL at the source leading to this well.

GE and its environmental consultants over the years have taken the position that the natural system is degrading the concentrations of the chlorinated solvents, and that this degradation is sufficient to make natural attenuation the best remedial approach for dealing with the groundwater contamination. This conclusion was first articulated completely in the GeoTrans report. GE's contention has been that natural degradation is the preferred remedial alternative for these chemicals. GE has been wrong.

The adequacy of the natural attenuation remedial alternative is not consistent with the fact that significantly contaminated groundwater is still present under the Prairie Ridge Golf Course. GE's claims are not supported by the data. The explicit predictions of decreasing concentrations of TCE with time predicted in the GeoTrans report are in obvious disagreement with the concentrations measured since the time of the prediction. (See <u>Appendix D</u>, Exhibit 5, Figures 5-9 to 5-20 and compare with <u>Appendix D</u>, Exhibit 7, Figures 10A, 10B, and 11 and <u>Appendix D</u>, Exhibit 8, Figures 11A, 11B and 11C.)

GE and its environmental consultants have also changed groundwater sampling methodologies (bailing, to low flow pumping, to passive diffusion bags) over the years making it difficult to see data trends and make proper interpretations of natural attenuation. All of the data, including those taken by passive diffusion bag sampling, for TCE from MW-105D are tabulated. (See Appendix C, Exhibit 4.) The apparent artificially low concentrations of TCE for passive bag samples is clear. Especially disturbing is the contrast in the two samples collected on June 11, 2003 - the passive bag sample had a concentration of TCE of 260 ug/l, and the low flow methodology sample had a concentration of 4,500 ug/l. The 4,500 ug/l concentration is in a similar range as concentrations detected in this well approximately a decade earlier, in the mid-1990s. Nevertheless, GE and its environmental consultants have only used passive bag samples to collect samples from MW-105D since 2004. A program of comparing passive bag results with the preceding low flow methodology should have been conducted by GE and its environmental consultants. The history of contamination found at MW-105D, the demonstrated affect that the sampling methodology has on the groundwater quality results from this well, and the high levels of contamination found in wells downgradient from MW-105D on the golf course, means that there is TCE contamination above the MCLs, but not necessarily at the precise values reported. More work is needed to understand these discrepancies. A similar problem exists for the data set for MW-1LD. (See Appendix D, Exhibit 6.) In any case, the data do not support the natural attenuation remedy.

GeoTrans stated in its report that the natural attention half-life for TCE in the vicinity of the main building (Building GE-1) ranged from 2.1 to 3.5 years. That means that every 2.1 to 3.5 years, the TCE concentrations would be reduced in half. Yet the string of concentrations of TCE in wells, ignoring the apparent artificially low values for

passive bag samples, clearly does not trend in that fashion. (See <u>Appendix C</u>, Exhibit 4.) These results are inconsistent with the idea of natural attenuation.

Furthermore, GeoTrans reported model-simulated TCE concentrations of the uppermost aquifer based on a worst case half-life of 6.9 years. (See <u>Appendix D</u>, Exhibit 5, Figures 5-12 and 5-15.) Figure 5-12 shows a predicted concentration of TCE in the area of the Prairie Ridge Golf Course clubhouse and the north supply well of roughly 100 ug/l in 2002, and Figure 5-15 shows a concentration in the apparent range of 10 ug/l in 2019 at that same location (no higher contour is shown on this map). Yet in 2012, at this very location, from the north supply well, TCE was found in groundwater at concentrations of 5,000 and 6,100 ug/l, at and over 50 times the predicted concentrations.

Moreover, also on Figures 5-12 and 5-15, groundwater just barely north of Rock Creek and on the golf course was predicted to have less than one ug/l of TCE in 2002 and a concentration in the range of 5 ug/l in 2019. Yet recent results from monitoring wells MW-7 and MW-8 installed in 2011 and sampled between 2012 and 2014 indicated TCE at concentrations in the hundreds and thousands of ug/l. (Appendix D, Exhibit 7, Figures 10A and 10B and Appendix D, Exhibit 8, Figures 11A and 11B.) Incidentally, MW-7 and MW-8 are the two wells that GeoTrans recommended be installed in 2001 (Appendix D, Exhibit 4, Figure 5-1) and these wells were not installed until 10 years later. TCE was found in a groundwater sample in 2012 from MW-8 at a concentration of 4,800 ug/l, which like the samples from the north well, even exceeded the maximum concentration of 4,300 ug/l used as the "high concentration point" basis for GeoTrans' predictive natural attenuation modeling (Appendix D, Exhibit 5, Figure 5-9) Clearly if natural attenuation were working, TCE would not be found in golf course wells at concentrations in the hundreds and thousands of ug/l. Rather, TCE would be found at concentrations approaching the MCLs, as GeoTrans predicted, but which never happened.

The concentrations measured recently in the wells under the Prairie Ridge Golf Course are much higher than ever predicted by GeoTrans, are consistent with the fact that TCE has been present at several thousands of ug/l in MW-105D, and are inconsistent with the claim that natural attenuation is a sufficient and appropriate remedy. These levels of contamination are also consistent with the presence of a DNAPL at the source. It is generally accepted that the presence of chlorinated solvents at concentrations of 1% of the solubility is a strong indicator of the presence of a (See Cohen and Mercer (1993), as repeated in the IRTC (1997)). solubility of TCE is generally accepted as between 1,100,000 ug/l and 1,500,000 ug/l. (See Illinois 1997 "TACO" rules and 2013 amended "TACO" rules, 35 IAC 742). Thus, the TCE concentration in groundwater needed to strongly suggest the presence of a DNAPL is 11,000 to 15,000 ug/l. These levels have been exceeded in monitoring well MW-105D, a well that is not far south of the degreaser units in the main building (Building GE-1). Concentrations of TCE at roughly half the 1% level have been found on the golf course (north supply well and MW-8), even further from the degreasers. The presence of such high concentrations of TCE in wells on the golf course and MW-105D support the likely presence of a DNAPL at the GE Plant.

GeoTrans also analyzed for the commonly found species that are of importance to reductive dechlorination, the process relied upon for natural attenuation. Scientific knowledge in 1999 and now relies on measurements such as oxidation-reduction potential (ORP), dissolved oxygen (DO), nitrate, ferric iron, sulfate, and sulfide. Continued monitoring of the parameters found to be most important should be instituted. However, while all of this data was collected by GeoTrans, it was not used to support or defend the viability of natural attenuation as a remedy.

Investigation of the Golf Course. GE did not begin to develop accurate data about the degree and extent of groundwater contamination on the golf course until late 2011 and 2012 when GE installed and sampled new monitoring wells MW-7 and MW-8 and sampled the two golf course water supply wells. It was through this work, which should have been performed much earlier, that GE learned that the contamination on the golf course was at higher concentrations and at a greater extent than was ever previously reported. Throughout the 2000s, including in 2007 when Lowell Beggs purchased the golf course, GE represented to the IEPA, and thus to the public at large, that there was a contained groundwater contamination problem on the golf course and contamination was taking care of itself through natural attenuation.

Opinion No. 3

The work done by GE and its environmental consultant ARCADIS for the vapor intrusion issues in the area near the GE Plant is insufficient to conclude that residents in the homes south of the plant, and occupants and users of buildings in the affected area such as the golf course clubhouse, are not at risk. Additional vapor intrusion investigation and monitoring work should be performed.

The characterization of the vapor intrusion pathway has been performed principally by GE's environmental consultant ARCADIS. ARCADIS collected soil gas and indoor air samples at homes in the residential area south of the GE Plant and from the clubhouse at the Prairie Ridge Golf Course.

At the residence at non-responsive in which Lowell Beggs and Kai Conway live, 1,2-DCA was found in an indoor air sample at a concentration greater than the risk based standard for indoor air, applying the default 1 in 1,000,000 (10⁻⁶) target cancer risk factor.

The initial vapor intrusion report prepared in 2013 by ARCADIS indicated that the measured concentration of 1,2-DCA was compliant with a standard based on a 1 in 100,000 (10⁻⁵) target cancer risk factor. In the subsequent 2014 ARCADIS vapor intrusion report, 1,2-DCA is accurately reported as not being in compliance with the 1 in 1,000,000 (10⁻⁶) standard. The 1 in 1,000,000 (10⁻⁶) target cancer risk factor is the generally accepted default target cancer risk level used for the development of screening criteria. In its 2014 report, ARCADIS noted that while present in indoor air at hon-responsive 1, 1,2-DCA was not found in the subslab soil gas collected beneath that home. The inference is that the 1,2-DCA contamination did not originate from the GE Plant.

Thus in 2013, GE (and ARCADIS) argued that 1,2-DCA in the indoor air was below the risk-based screening level. In 2014, GE (and ARCADIS) argued that 1,2-DCA in the indoor air was above the risk-based screening level, but the 1,2-DCA was not caused by GE because it was not in the soil gas.

1,2 DCA was first found in groundwater sampled from MW-105D in 1987 by Mathes. 1,2-DCA was reported in several soil and groundwater samples in the data tables contained in the 2014 ARCADIS report. Based on the data, more vapor intrusion testing and risk analysis should be done at the home at non-responsive.

Also reported by ARCADIS, indoor air and soil gas samples collected from the clubhouse at the Prairie Ridge Golf Course contained chlorinated solvents associated with the GE Plant. The concentrations do not indicate active remediation is necessary at this time, but more vapor intrusion and risk analysis should be done

Based on the levels of indoor air and soil gas concentrations found in samples collected by GE and its consultant ARCADIS, vapor intrusion is a concern, and long term vapor intrusion monitoring is necessary. Contamination continues to migrate from the GE Plant, and levels of chlorinated solvents in groundwater under homes and buildings could change over time. Conditions of homes and buildings also could change over time. Finally, recent publications on the general subject of vapor intrusion have shown that reliance on just a few discrete tests for vapor intrusion is not likely to be adequate to asses risk. (Johnston and Gibson, 2013 and ASTM, 2014.) Under the circumstances in which TCE is present in groundwater south of the GE Plant in the thousands of ug/l, and where the nature and extent of contamination is not fully understood, and because only limited testing has been performed at homes and in the clubhouse, GE should set up a program to further measure and monitor the vapor intrusion risk, and implement vapor intrusion mitigation if needed.

Opinion No. 4

The work done to date by GE and its environmental consultants is not sufficient to make a proper final remedial determination for the Prairie Ridge Golf Course. However, what is clear is that natural attenuation has not worked and is not an appropriate remedy. Source control at the GE Plant and active remediation under the golf course will be needed. More investigation work is necessary.

Several simple observations of the positions taken by GE and its environmental consultants show that their present understanding of the groundwater conditions under the Prairie Ridge Golf Course is insufficient to decide the ultimate remedy.

First, the role that Rock Creek has played in the hydrogeologic system is a threshold issue that needs to be addressed. The parts of Rock Creek which lost or lose water need to be clearly defined. GE cannot implement a remedy with a fundamentally flawed understanding of the behavior of Rock Creek.

Second, defining the horizontal and vertical extent of contamination is essential. A final remedy cannot be developed when the nature and extent of contamination is not defined, and 27 years after the Mathes report, the nature and extent of contamination, from the source of contamination to the plume's outermost and deepest extents, is still not defined.

Third, GE and its environmental consultants have historically stated that natural attenuation should be the mechanism chosen to deal with the concentrations of chlorinated solvents that underlie the Prairie Ridge Golf Course. This remedial option has been proven ineffective. GE and its environmental consultants had the capacity to determine that it was not working long ago.

Fourth, a quantitative understanding of the source strength - that is the distribution of concentration of chlorinated solvents in the deep soil and groundwater at the location or locations from which the chemicals likely were released does not exist. At the least, a well tapping the upper bedrock fractured zone should be installed just to the south of each degreaser. The remaining magnitude of contamination in the source areas needs to be defined to develop an effective remedy. Without that understanding, the appropriate remedy cannot be determined.

Fifth, existing groundwater wells with TCA should be sampled for 1,4-dioxane, a common TCA additive, and a highly mobile and likely human carcinogen. If found, 1,4-dioxane could be a very valuable "tracer" for groundwater flow and contamination.

Sixth, additional field efforts should be commenced on the Prairie Ridge Golf Course with the aim of completely understanding the groundwater flow conditions (vertical and horizontal pathways, stratigraphy, and the role of Rock Creek) and the horizontal and vertical extent of groundwater contamination. At a minimum, new nested monitoring wells with a surface water elevation measurement point should be installed next to the south side of Rock Creek. Based on results from these points, other wells will likely need to be installed and surface water discharge measurements may need to be made.

Seventh, in conjunction with the performance of the investigation work described above, a qualified environmental remediation team should be engaged to evaluate remedies, both interim and long term. Active remediation technologies should be considered that will both prevent contamination from leaving the GE Plant and treat the contamination under the Prairie Ridge Golf Course. Source control to prevent contamination from leaving the GE Plant may include pump-and-treat, impermeable walls, and reactive walls. Treatment of groundwater under the golf course may include pump-and-treat or the injection of materials that accelerate the rate of chlorinated solvent degradation.

In sum, a significant investigation and active remediation effort is needed for GE to address the contamination problem at and downgradient from the GE Plant that has persisted for decades without meaningful improvement. Waiting for contamination to

degrade while conducting limited monitoring has not worked, is not working, and cannot continue indefinitely.

REFERENCES

American Society for Testing and Materials (ASTM), 2013, Continuous soil gas measurements: worst case risk parameters, Selected Technical Papers STP 1570, eds. Everett, L.G. and M.L. Kram, 156p.

Clenell, M.B., D.N. Dewhurst, K.M. Brown, and G.K. Westbrook, 1999, Pemeability and anisotropy of consolidated clay, <u>in</u> Aplin, A.C., A.J. Fleet, and J.H.S. Macquaker, eds., Muds and mudstones: physical and fluid-flow properties, Geological Society (London) Special Publication No. 158, p. 79-96.

Cohen, R.M. and J.W. Mercer, 1993, DNAPL site evaluation, U.S. Environmental Protection Agency, Office of Research and Development, Robert S. Kerr Environmental Research Laboratory, Ada, OK. Available online at: http://www.ge3c.com/dgo/project/level5/dnaples.pdf

Fetter, C.W., 2001, Applied Hydrogeology, 4th edition, Prentice Hall.

Franke, O.L. and T.E. Reilly, 1987, The effects of boundary conditions on the steady-state response of three hypothetical groundwater systems; results and implications of numerical experiments, US Geological Survey Water Supply Paper 2315. Available on line at: http://pubs.usgs.gov/wsp/wsp/wsp/2315/pdf/wsp/2315.pdf

Freeze, R.A. and J.A. Cherry, 1979, Groundwater, Prentice Hall.

Interstate Technical/Regulatory Cooperation, September 1999, Natural attenuation of chlorinated solvents in groundwater: principles and practices. In Situ Bioremediation

Johnston, J.E. and J. MacDonald Gibson, 2013, Screening houses for vapor intrusion risks: a multiple regression analysis approach. Environmental Science and Technology, v. 47, no. 11, p. 5595-5602.

Kresic, N., 2007, Hydrogeology and groundwater modeling: 2nd edition, CRC Press.

Illinois Environmental Protection Agency, 2012, National Pollution Discharge Elimination System (NPDES) Permit No. IL0027006, City of Morrison, Public Fact Sheet. Available on the web at http://www.epa.state.il.us/public-notices/2012/morrison-stp/index.pdf

Illinois' Tiered Approach to Corrective Action Objectives (TACO) Rules, 35 III. Admin. Code 742.

Imes, J.L., 1985, The Ordovician Ground-water Flow System in Northern Missouri, with Emphasis on the Cambrian- Aquifer, U.S. Geological Survey Professional Paper 1305, 61p, http://pubs.er.usgs.gov/publication/pp1305.

Mandle, R,J, and A.L. Kontis, 1992, Simulation of groundwater flow in the Cambrian-Ordovician aquifer system in the northern Midwest, United States, US Geological Survey Professional Paper 1405-C. Available on the web at http://pubs.usgs.gov/pp/1405c/report.pdf

McDonald, M.G. and A.W. Harbaugh, 1988, A modular three-dimensional finite difference groundwater flow model, Techniques of Water Resources Investigations of the US Geological Survey, Book 6, Chapter A-1. This reference and other supporting materials available at; http://water.usgs.gov/ogw/MODFLOW_list_of_reports.html

de Marsily, G. 1986, Quantative hydrogeology: groundwater hydrology for engineers, Academic Press.

Morrison, R.D. and B.L. Murphy, 2002, Chlorinated Solvents, Chemistry, History and Utilization for Source Identification and Age Dating, in Introduction to Environmental Forensics, Academic Press, pp. 261-310.

Nicholas, J.R. and R.W. Healy, 1988, Tritium Migration from a Low-Level Radioactive-Waste Disposal Site near Chicago, Illinois. U.S. Geological Survey Water Supply Paper 2333, 46p, http://pubs.er.usgs.gov/publication/wsp2333.

Schwartz, F.W. and H. Zhang, 2003, Fundamentals of groundwater, John Wiley.

Todd, D.K., 1980, Hydrology: 2nd edition, John Wiley & Sons.

U.S. Geological Survey, 1934 to 2012, topographic maps of Morrison area (early maps are 15 X 15 and later ones are 7.5 X 7.5). Available on the web at http://store.usgs.gov/b2c_usgs/usgs/maplocator/(ctype=areaDetails&xcm=r3standardpit rex_prd&carea=%24ROOT&layout=6_1_61_48&uiarea=2)/.do

U.S. Geological Survey, records for Gage, 05446000 {05445500} Rock Creek at Morrison, IL Available on the web at http://pubs.usgs.gov/wdr/2004/wdr-il-04/data/discv_cy/indices0/05446000.htm and at {http://pubs.usgs.gov/wdr/2004/wdr-il-04/data/discv_cy/indices0/05445500.htm}

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 25 of 127 PageID #:925

APPENDIX A

RESUME OF KONRAD J. BANASZAK

Konrad Banaszak, PhD and CPG Hydrogeologist & Geochemist

Konrad J. Banaszak, PhD is a hydrogeologist and geochemist, bringing over 40 years of experience to Genesis Engineering and Redevelopment as Chief Scientist. Dr. Banaszak is a leading expert in the fate and transport of chemicals, the geochemistry of water and sediments, and the migration and impacts of soil vapor to indoor air. Dr. Banaszak provides expert witness services on complex litigations for plaintiffs and defendants and Project Management services on numerous projects.

From his PhD thesis on the origins of lead and zinc ores found in limestones and dolomites to recent efforts to understand the generation and movement of trichloroethene vapors, Konrad has worked with fluids. As a geochemist and hydrogeologist, he started in academia. The development of a heightened environmental concern lead to his involvement first with the government as a regulator and researcher and then in the private sector as a consultant/expert.

Dr. Banaszak has significant experience with the management of scientists, engineers, and the professionals necessary to government and business. For example, he was Chief of a 50 person Hydrologic Investigations Section with an annual budget of roughly \$2.5m in the mid '80s. Konrad opened the Indianapolis Office of Geraghty and Miller (now Arcadis-US) and successfully lead the office to high profitability. He also led the Environmental Investigations Business Practice for Arcadis-US, with responsibility for ensuring both the scientific accuracy and profit and loss of 42 offices. Konrad joined Genesis Engineering and Redevelopment in October of 2010.

EDUCATION

Bachelor of Science, Geology, Beloit College Master of Science, Geology, Northwestern University Doctorate, Geochemistry, Northwestern University

CERTIFICATIONS

Illinois Licensed Professional Geologist (#196-000436) Indiana Certified Professional Geologist (#16) Kentucky Certified Professional Geologist (#835) Wisconsin Certified Professional Geologist (#446) Certified Professional Geologist (AIPG-#3981)

EXPERIENCE

Chief Scientist, Genesis Engineering and Redevelopment, 2010-present

Chief Scientist, EnviroForensics, 2008-2010

Senior Vice President, Keramida Inc., 2003-2008

Independent Consultant, 2003

Senior Vice President, Practice Leader, Geraghty and Miller which became Arcadis-US, 1988-2002

Groundwater Specialist and then Chief of Hydrologic Investigations, Indiana District, Water Resource Division, United States Geological Survey, 1981-1988

Hydrogeologist/Water Quality Specialist additionally Officer for Mineral Research Institutes, US Office of Surface Mining, Region III, 1979-1981

Associate Professor of Geology, Indiana University Purdue University at Indianapolis, 1977-1979

Assistant Professor of Geological Engineering, University of Mississippi, 1971-1977

PROFESSIONAL ASSOCIATIONS

American Association for the Advancement of Science

American Geophysical Union

American Institute of Hydrology

American Institute of Professional Geologists

American Water Resources Association

Geological Society of America

Geochemical Society

Indiana Academy of Sciences, Fellow

Indiana Geologists

Indiana Water Resources Association

REPRESENTATIVE ACTIVE PROJECTS

Chlorinated VOCs in a karst terrain with Public Supply Wells in Central MO.

Cleanup of nitrate contaminated groundwater, Central Valley, CA.

Remediation of landfill that received drilling mud and designation of contaminants to PRPs, San Joaquin Delta, CA.

Gasoline contamination in groundwater and as a separate phase in southern MS.

Chlorinated VOCs contamination, Los Angeles, CA.

Chlorinated and Petroleum VOCs contamination, Southern CA

Various Dry Cleaners and Plating Shops, from NY to CA.

REPRESENTATIVE FORMER PROJECTS

Vapor intrusion of chlorinated VOCs for housing development in Central IN.

Consulting Expert, chlorinated VOCs and Perchlorate groundwater contamination in Southern CA.

Expert witness - cost recovery Brownfield revitalization and cleanup Indianapolis, IN.

Expert witness for cVOC contamination in groundwater from industrial park in suburban Chicago.

Expert Witness for nitrate contamination of Public Supply Well, Central Valley, CA.

Nitrate contamination of groundwater and domestic well, Central Valley, CA.

Expert witness for production of sediment in surface streams from a construction site in Central Indiana.

Floating product and petroleum contamination with vapor intrusion and surface water impacts in area of New York City.

Goundwater level issues for drainage control ponds in Central Indiana.

Geochemical expert in Superfund cost allocation, arsenic in Pennsylvania.

Lead consultant on pesticide/herbicide Superfund site in Southeast.

Consulting hydrologist for quarry operator for site in Central Indiana, which then lead to work all over the contiguous US.

Lead consultant on RCRA RFI/CMS for large nonferrous metals refining and recycling plant in NW IN.

Lead/advising consultant on RCRA RFI/CMS for two steel mills in NW IN.

Lead and advising consultant for a self-implementing PCB cleanup - "Mega Rule".

Geochemical consultant on chemicals that entered Puget Sound, WA.

Geochemical and isotope expert witness for landfill toxic tort in Texas.

Geochemical and loading allocation expert under Superfund watershed in New York.

Expert witness on the probable character of dust in an asbestos case brought to trial in San Francisco but concerning a site in Hoboken, NJ.

Source identification and allocation of PCBs in two streams in IN and one in OH.

Expert witness for cost allocation for a chemical depot that was atop an old coal tar refinery in Chicago.

Expert witness, geochemistry and isotopes of oil field brines for several sites in TX.

Advising geochemist on mobility and treatment nuclear waste site in WA.

Lead hydrogeologist in the development of an Institutional Control Area alternative for several Superfund subsites in Nebraska.

Lead hydrogeologist and geochemist (including radionuclide and stable isotopes) for site-wide study of Argonne National Laboratories, IL.

Expert witness for harm and cost recovery action in Federal Bankruptcy action.

Geochemical/groundwater expert in cost recovery for cVOCs "Silicon Valley," CA.

Senior advisor for geochemistry of inorganic and organic contamination for a large landfill in the middle of intense industrial development in Los Angeles Metro Area.

Expert witness for cost recovery for a major landfill operator for multiple sites.

Advising expert on hog waste for major food manufacturer, NC.

Senior advisor for environmental chemistry – RCRA - pesticides manufacturer KS.

Groundwater expert for Brownfield redevelopment - Jefferson North Assembly Plant, Chrysler, Detroit, MI.

River Bank Infiltration projects for both Louisville Water and Indianapolis Water.

Expert witness for manufacturer of large paper making machinery in N IL over potential contamination of domestic wells.

Expert witness for manufacturer in Los Angeles Area, using a then new "chemical fingerprinting" technique.

Expert witness for logger in California involved in a case of two fish kills and alleged sedimentation and water quality degradation of a river and two reservoirs.

Outside expert for State of North Carolina on geochemistry and hydrogeology for siting a low-level radioactive waste facility.

Expert witness in several cases for the coal mining industry in Indiana, the most notable of which concerned disposal of coal combustion wastes in surface mines.

Geochemical expert on cost allocation in a case concerning heavy metals in SC.

Expert to develop systems to predict behavior of chemicals spilled on or applied to soils for a major agricultural chemical company.

Expert witness for nitrate contamination from hog waste in surface stream in IN.

Expert Review of Four County Landfill (IN) for the Agency for Toxic Substances and Disease Registry.

Expert Review of the EIS for the proposed CDF in Lake Michigan to hold sediments to be dredged from the Indiana Harbor Canal for EPA-V.

Expert Review of the REM/FIT of the North Main Street Well Field, Elkhart, IN for EPA-V.

Represented USGS in Development of Field effort to capture spring flow at highest groundwater level from karst systems near Bloomington, IN for EPA-V.

Expert witness - sample collection of stream water for the Office of Surface Mining. Conducted acid rain studies in Indianapolis, IN and Oxford, MS.

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 31 of 127 PageID #:931

APPENDIX B

PUBLICATIONS OF KONRAD J. BANASZAK

PUBLICATIONS

Konrad J. Banaszak

- 1969 Regional Significance of Lithofacies of the Mesozoic Rocks of the Sand Springs Range, West Central Nevada [abs]: Proceedings of the Illinois Academy of Science.
- 1973 Interaction of Bulk Precipitation, Stream Water, and Sewage in a Small Watershed near Oxford, Mississippi: in Water for the Human Environment, Proceedings of the First World Conference on Water Resources, vol. iv, Special Sessions, Chow, V.T., Csallany, S.C., Krizek, R.J., and Preul, H.C., eds., p. 524-536.

Interaction of Bulk Precipitation, Stream Water, and Sewage in a Small Watershed near Oxford, Mississippi: Water Resources Research Institute, Mississippi State University, Mississippi State, Mississippi, 70p. (KJB, senior author with C.B. Whitten and D.A. Thompson, junior authors)

- 1975 Relative Throughfall Enrichment by Biological and by Aerosol-Derived Materials in Loblolly Pines: Water Resources Research Institute, Mississippi State University, Mississippi State, Mississippi, 28p.
- 1977 Runoff from Softwood Plots that Have Been Thinned and Clearcut: Water Resources Research Institute, Mississippi State University, Mississippi State, Mississippi, 21p.
- 1978 Fluorite Replacing Satin Spar Gypsum in Southern Indiana: Theoretical Geochemical Implications [abs]: <u>in</u> Abstracts with Programs, 91st Annual Meeting of the Geological Society of America, p. 362.

Output of Dissolved Nutrients in Clearcut, Thinned, and Control Loblolly Pine Plots [abs]: in Abstracts of Papers of the 144th National Meeting of the American Association for the Advancement of Sciences, Herschman, A., ed., p. 183.

The pH of Ore Fluids of Mississippi Valley Type Deposits [abs]: in Abstract and Proceedings of the $24^{\rm th}$ Institute on Lake Superior Geology, p. 4.

- 1979 A Coherent Basinal-Brine Model of the Genesis of Mississippi Valley Pb-Zn Ores Based in Part upon Absent Phases: Pre-Print 79-94 for the 108th Annual Meeting of the Society of Mining Engineering of the AIME, 9p.
- 1980 Coals as aquifers in the Eastern United States: 1980 Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation, University of Kentucky, Lexington, KY, p. 235-241.

1980 Acid Rain and Its Effects on the Environmental Impacts of Surface Mining [abs]: <u>in</u> Abstracts with Programs, 93rd Annual Meeting of the Geological Society of America, p. 382.

The pH of Precipitation in Indianapolis [abs]: $\frac{\text{in}}{90}$, Proceedings of the Indiana Academy of Science, v. $\frac{90}{90}$, Winslow, D.R., ed., p. 296.

1981 Predicted changes in the mineralogy of spoil as a function of net neutralization potential and rate of flushing: 1981 Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation, University of Kentucky, Lexington, KY, p. 459-462.

Geochemical Considerations of Seawater as a Source of Pyritic Sulfur in Coal [abs]: in Abstracts with Programs, 94th Annual Meeting of the Geological Society of America, p. 402.

- 1982 Deposition of Sulfide and Associated Minerals in Coal as a Function of the Ratios of A) Iron to Sulfur in the First Deposited Phase and B) Swamp to Seawater [abs]: in Abstracts with Programs, 95th Annual Meeting of the Geological Society of America, p. 438.
- 1983 Drainage problems in Little Eagle Creek, Indianapolis and Speedway, Indiana: in Contribution to urban engineering geology of the Indianapolis area, Field trips in Midwestern Geology, v. 2, Geological Society of America, 1983 Meeting, Indianapolis, IN.

Ground-Water Monitoring around Coal Mines for Non-Regulatory Purposes [abs], Ground Water Monitoring Review, v. 3, no. 1, p.152.

1984 Acid Rain -- What We Know Even in Indiana [abs]: in Proceedings of the 5th Water Resources Symposium of the Indiana Water Resources Association, Martin, J.D., ed., p. 80.

Landfills in Marion County - A Revisit [abs]: in Proceedings of the Indiana Academy of Science, v. 94, Winslow, D.R., ed., p. 387. (KJB, Senior Author; T.K. Greeman, Junior Author)

1985 Potential effects on ground water of a hypothetical surface mine in Indiana: Ground Water Monitoring Review, v. 5, no. 1, p. 51-57.

Indiana - ground-water resources: <u>in</u> National Water Summary 1984, U.S. Geological Survey Water Supply Paper 2275, p. 205-210.

KJB Publications (cont.) page 3

- 1985 Theoretical Technique for Determining the Cumulative Impact of Iron and Manganese Oxidation in Streams Receiving Coal-Mine Discharge: 1985 Symposium on Surface Mining, Hydrology, Sedimentology, and Reclamation, University of Kentucky, Lexington, KY p. 105-114. (Keith Bobay, Senior Author; KJB, Junior Author)
- 1986 Ground-Water Basins and Statewide Ground-Water Monitoring Indiana as an Example [abs]: in Proceedings of the Indiana Academy of Science, v. 95, Winslow, D.R., ed., p. 303.
- 1986 Preliminary Analysis of the Ground-Water System of the Heavily Industrialized, Urbanized Basin of the Grand Calumet River/Indiana Harbor Canal, Northwestern Indiana [abs]: 31st Annual Midwest Groundwater Conference, Little Rock, AK.
- 1987 Indiana Ground-water quality: U.S. Geological Survey Open File Report, 87-0724, 8 p.
- 1988 Water quality in a thin water-table aquifer adjacent to Lake Michigan within a highly industrialized region of Indiana: in The Great Lakes: Living with North America's Inland Waters, D. M. Hickcox, ed., American Water Resources Association, Bethesda, MD, p. 247-258. (K. J. Banaszak and J. M. Fenelon)
 - Sulfur Isotopes in Unconsolidated Aquifers in Northwestern Indiana and Speculation on Their Relation to Precipitation Chemistry, in Proceedings of the 9th Annual Water Resources Symposium of the Indiana Water Resources Association, Bobay, K.E., ed., p. 67-72.
- 1989 Preliminary analysis of the shallow ground-water system in the vicinity of the Grand Calumet River/Indiana Harbor Canal, northwestern Indiana: U.S. Geological Survey Open-File Report 88-492, 45p. (L. R. Watson, R. J. Shedlock, K. J. Banaszak, L. D. Arihood, and P. K. Doss)
 - Coal-Hydrology of Interior Province Eastern Region: in Summary of U.S. Geological Survey and U.S. Bureau of Land Management National Coal-Hydrology Progress. Britton, L.J., and others, eds. U.S. Geological Survey Professional Paper 1464. p. 47-52.
- 1990 Targets for Statewide Ground-Water Quality Monitoring: in Proceedings of the 11th Annual Water Resources Symposium of the Indiana Water Resources Association, Haitjema, H.M., ed., p. 28-31.
- 1994 Comparison of Regulation of Forestry Practice in Indiana and California What the Future May Bring: in Proceedings of the 15th Annual Water Resources Symposium of Indiana Water Resources Association, Turco, R.F., ed., p. 16-17.

KJB Publications (cont.)
page 4

- 1994 Glacial geology and groundwater flow in Northern and Central Indiana: in Proceedings of the Indiana Academy of Science, G.E. Dolph, ed., v. 98, p. 273-279.
- 1995 A brownfields success story Chrysler's Jefferson North Assembly Plant in Detroit, Michigan. in Remediation and Reuse. Indiana Department of Environmental Management. v. 1. Issue 7. p. 4-5.
- 2004 Communicating Geology Experientially Derived Trends in Public Decision Making [abs]. in 2004, Geological Society of America Abstracts with Programs. V. 36, no. 5 p.529

Negative Indicators in Fenton application give insight into process. in Fourth Battelle Conference of Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California. (S.A. Hunnicut, A.A. Gremos, and K.J. Banaszak)

Geochemical Methods beyond Cl/Br for Distinguishing Brines [abs]. in. Amer. Assoc. of Petroleum Geologists. Discovery article #90026@2004. Nat'l Mtg. Dallas, TX and Eastern Section Mtg. Columbus, OH.

2005 In-Situ reductive dechlorination of solvents. in Heleco Conference, Athens, Greece (K.J. Banaszak, A.A. Gremos, and S.A. Hunnicut).

Communicating science in public decision making. in Heleco Conference, Athens, Greece.

Scientific, cost-effective investigations of karsts. in Heleco Conference, Athens, Greece.

2007 Basics of Vapor Intrusion. Indiana News of the Air & Waste Management Association. September. P. 10-12.

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 36 of 127 PageID #:936

APPENDIX C

REPORT EXHIBITS

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 37 of 127 PageID #:937

Exhibit 1

Map of GE Plant, Prairie Ridge Golf Course, and Surrounding Area Prepared by GER

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 38 of 127 PageID #:938

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 39 of 127 PageID #:939

Exhibit 2

Map of Geologic Features and Cross-sections Prepared by GER

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 40 of 127 PageID #:940

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 41 of 127 PageID #:941

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 42 of 127 PageID #:942

Case: 3:13-cv-50348 Document #: 40-1 Filed: 02/27/15 Page 43 of 127 PageID #:943

Illinois State Geological Survey Well Log for Prairie Ridge Golf Course Supply Well and Video Camera Log from MWH's 2013 FSI Report

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Non Potable Water Well	Top	Bottom
top soil	0	2
yellow sandy clay	2	
yellow clay & gravel	5	35
Niagara	35	180
Total Depth Casing: 6" STEEL T&C 19.45# from 0' to 102' Grout: CLAY from 0 to 102.		180
Size hole below casing: 6"		
Water from Niagara at 35' to 180'. Static level 3' below casing top which is 2' above GL Pumping level 40' when pumping at 0 gpm for 2 hours		
Remarks: pump installed by others		
Owner Address: W. Morris St. Morrison, IL Location source: Location from permit		

Permit Date: November 2, 1992

Permit #

COMPANY Lyons, Glenn L

FARM Morrison Country Club

DATE DRILLED November 9, 1992 NO.

ELEVATION 0 COUNTY NO. 21685

LOCATION SE SE NW

LATITUDE 41.808962 **LONGITUDE** -89.989322

COUNTY Whiteside API 121952168500 13 - 21N - 4E

Notes:	
	Inspection conducted on November 6, 2012 by Layne Christensen - Aurora, Il
	Measured depth: 180 ft.
	Pump depth: 80 ft.
	Footage elevations from TOC
	TOC approximately 10" above grade
	Measured depth: 180 ft.
	Pump depth: 80 ft.
	Static water level 4.5 feet
	Running water used to flush debris from well casing during inspection
	6-inch casing
	Joints - threaded coupled pipe
	Heavy debris obscuring camera from below 86 ft.

Video time	Footage	Obsevations
0:00	4.7	Start inspection
2:35	22	Casing joint
3:50	42	Casing joint
4:50	62	Casing joint
5:50	82	Casing joint
6:05	86	Heavy debris lining casing/borehole
7:00	89	Camera obscured by debris - inspection halted at 89 ft.
8:40	89	Inspection resumed from 89 ft.
9:50	104	Camera obscured by debris - inspection halted at 104 ft.
18:00	102	Inspection resumed from 102 ft.
19:05	116	Possible break/small void in bedrock formation
20:30	136	Camera obscured by debris - inspection halted at 136 ft.
25:45	136	Inspection resumed from 136 ft. Low visibility
27:45	174	Camera obscured by debris - inspection halted at 174 ft.
31:20	174	Inspection resumed from 174 ft. Low visibility
32:00	180	Soft bottom reached at 180 ft.
32:30	180	Begin reverse filming
34:45	116	Possible break/small void in bedrock formation
37:00	102	End of casing at 102 ft halted for second look at 102 ft
38:30	102	End of casing at 102 ft.
44:54	0	End of inspection

Table of TCE Data in Monitoring Well MW-105D Prepared by GER

TABLE 1

TCE Concentrations Through Time
With Passive Bag Samples and Duplicate
Samples Denoted

Well	Date	TCE (ppb)	Qualifi
	6/28/1987	14,000	
	1/8/1988	1,600	
	4/21/1989	NS	
	9/18/1991	16,000	-
	12/10/1991	16,000	-
	3/8/1992	21,000	-
	6/1/1992	20,000	
	9/9/1992	12,000	
	12/4/1992	14,000	
	3/16/1993	14,000	
	6/24/1993	8,800	
	9/16/1993	8,400	
	12/16/1993	11,000	
	3/16/1994	10,000	
	6/15/1994	4,600	
	9/22/1994	6,000	
	11/29/1994	9,600	
	3/27/1995	8,400	
	6/15/1995	6,000	
	9/15/1995	4,000	
	12/7/1995	6,400	1
	6/14/1996	5,700	
	9/19/1996	3,800	
	12/11/1996	5,700	
	3/10/1997	7,000	
	9/22/1997	4,900	
	9/22/1997	4,700	DUP
	4/7/1998	5,500	
	4/7/1998	5,100	DUP
G-105D	11/13/1998	6,400	all the same of th
G-105D	11/13/1998	6,100	DUP
	2/4/1999	6,400	
	2/4/1999	6,300	DUP
	6/16/1999	4,300	DUP
	6/16/1999	4,300	
	6/12/2000	5,400	
	8/22/2000	3,500	
	6/20/2001	3,400	
	11/7/2001	3,500	
	6/27/2002	1,600	
	6/27/2002	250	PB
	11/25/2002	2,600	
	11/25/2002	2,500	DUP
	11/25/2002	120	PB
	11/25/2002	120	PB, DUP
	6/11/2003	260	PB
	6/11/2003	4,500	
	10/18/2004	110	PB
	11/7/2005	26	PB
	11/7/2006	30	PB
	10/30/2007	26	PB
	1/5/2008	13	PB
	1/5/2008	12	PB, DUP
	1/21/2012	2.65	PB
	6/11/2013	210	PB
	6/11/2013	180	PB, DUP
	9/25/2013	170	PB
	9/25/2013	130	PB, DUP
	2/13/2014	23	PB
	2/13/2014	23	PB, DUP

Note:

- -"NS" Not Sampled
- -"DUP" Duplicate Sample
- -"PB" Passive Bag Sample
- -"ppb"- Parts Per Billion

Initial samples were collected by bailer methods. Some time in 1990s, low flow sampling methods were initiated. In 2002, passive diffusion bag testing began. Only passive diffusion bag methods have been used since 2004.

APPENDIX D

SELECTED MATERIALS FROM GE AND IEPA REPORTS AND DOCUMENTS

Selected Materials from Mathes' Phase I Remedial Investigation Report (dated October 1987)

printed 07/11/2013 11:22AM by Sharon Dowson p. 66/250

Table 2-2
PRIVATE WELL SURVEY LIST
CITY OF MORRISON, ILLINOIS
JULY 2, 1987

Location Number	Owner's Name/Address	Approximate Location	Well Information Supplied by Owner
1	non- responsive	SW of Fairgrounds	Drilled Well TD-40' Basement Pump Rusted Tested by Chicago-EPA Tested by Health Dept.
2	non-responsive.	SW of Fairgrounds	Well TD-Unknown Well Located by Barn (Northside)
3	non- non-responsive	W of Golfcourse	No Well Information
4	D.O.T. Garden Plain Rd. Supr. Harvey Williams (In Dimon)	NW of Hwy. 30 and S101	No Well Information?
5	non-responsive	NW of Morrison	Well TD-Approximate- 70' Cased-depth unknown
6	non-responsive	Next to Old Mill Hwy. 30 and S101	No Well Information?
7	Mt. Pleasant Township Garage	N of Quarry	No well information
8	non- non-responsive	N of Quarry N of Creek	New Well 11 or 12 years old

TD = Total depth of well.

Note: Wells surveyed by Kerry Keller of IEPA and Craig Maxeiner of John Mathes & Associates, Inc., on July 2, 1987.

Table 5-1 MONITORING WELL AND GEOLOGIC INFORMATION CITY OF MORRISON, ILLINOIS JULY, 1987

Well Number	Ground Surface Elev.	Total Depth Elev.	Water Level Elev.*	Top of Rock Elev.	Top of Shale Elev.	Screened Interval
G101D	623.9	384.9 (239)	612.6 (11.3)	607.9 (16)	386.9 (237)	384.9-400.9 16 **
G102D	711.7	612.7 (99)	638.3 (73.3)	656.2 (55.5)	N/A N/A	629.5-645.4
G103S	696.7	664.7 (32)	DRY	665.9 (30.8)	N/A N/A	669.2-685.2 16 **
G104S	624.3	600.4 (23.9)	614.4 (9.8)	605.3 (19)	N/A N/A	606.6-617.1
G104D	624.6	574.6 (50)	615.5 (9.1)	605.6 (19)	N/A N/A	575.6-591.6 16 **
G105S	634.2	581.2 (53)	621.1 (13.1)	N/A N/A	N/A N/A	610.2-626.2
G105D	642.1	586.2 (55.9)	619.5 (22.6)	623.1 (19)	N/A N/A	594.0-609.9 15.9**
G106D	632.4	604.4 (28)	622.9 (9.4)	628.4 (4)	N/A N/A	609.9-625.9
CW 1	625	(-1645)	N/A N/A	610 (15)	400 (225)	
CM 3	640	(-1625)	562 (78)	551 (89)	383 (257)	
CW 4	715	(-1769)	535 (180)	651 (64)	347 (368)	
GE WELL	670	(-1101)	610 (60)	570 (100)	363 (307)	
TH1	640	564 (76)	N/A N/A	565 (75)	N/A N/A	*******
TH2	645	492 (153)	N/A N/A	493 (152)	N/A N/A	
тн3	635	605 (30)	N/A N/A	627	N/A N/A	
TH4	635	585.5 (49.5)	N/A N/A	587 (48)	N/A N/A	
тн5	630	600 (30)	N/A N/A	616 (14)	N/A	
тн6	625	552 (73)	N/A N/A	552? (73?)	N/A N/A N/A	

^{* =} Measured prior to sampling.
** = Length of screen interval.
CW 1 = City Well.
G101D = Mathes-installed wells.
N/A = Data not available.
TH1 = City test borehole.
Note: Elevations are in feet above mean sea level. All numbers in parentheses are in feet below ground surface.

Table 6-1 DISCRETE-INTERVAL GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 20-21, 1987

Comp.l.o	Donkh	Relative Vapor		Concentrat	ion (ug/L)
Sample Number	Depth (ft.)	Conc. (NDU)	Compound	Measured	Detection Limit
G101D-1	234-211	3	Methylene chloride	42	5
			Acetone TCE Toluene	17 B 140 4 J	10 5 5
G101D-2	213-190	1.5	Acetone TCE Toluene	11 B 110 2 J	10 5 5
G101D-3	193-170	0	Acetone TCE	15 B 53	10 5
G101D-4	153-130	0	Acetone 1,1,1-TCA TCE	12 B 5 55	10 5 5
G101D-5	113- 90	0	Acetone TCE	13 B 70	10 5
G101D-6	53- 30	0	Acetone TCE	3 JB 36	10 5
Trip Blank	 .		Acetone	8 JB	10

NDU = needle deflection units measured with HNU.

B = Compound was also found in the blank.

J = Estimated value, below detection limits.

TCE = Trichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

NOTE: Only compounds detected in the samples are listed.

Source: Mathes, 1987.

Table 6-2, Continued

COMPOSITE GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

Sample		Concentration (ug/L)		
Number	Compound	Measured	Detection Limit	
City Well #3	1,2-Dichloroethene	6	5	
	TCE	53	5	
City Well #3	1,2-Dichloroethene TCE	6	5	
(Duplicate)		56	5	
City Well #4	(None)			
Bailer blank	Acetone	9 JB	10	
	Methylene chloride	5 B	5	
Trip Blank #1	Acetone	5 JB	10	
	Methylene chloride	5 B	5	
Trip Blank #2	(None)	BDL	-	

= Compound was also found in the blank.
= Estimated value, below detection limits.
= Compound was identified in an analysis at a secondary dilution J D factor.

BDL = Below detection limit.
TCE = Trichloroethene
1,1,1-TCA = 1,1,1-Trichloroethane

Note: Only compounds detected in the samples are listed.

Source: Mathes, 1987.

Table 6-2 COMPOSITE GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS .

CITY OF MORRISON, ILLINOIS JUNE 29-30, 1987

Sample		Concentration (ug/L)
Number	Compound	Detection Measured Limit
G101D	Acetone TCE	7 J 10 52 B 5
G102D	Acetone	5 JB 10
G104S	(None)	BDL -
G104D	(None)	BDL
G105S	Acetone Methylene chloride	5 JB 10 3 J 5
G105D	Acetone Methylene chloride 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene Chloroform 1,1,1-TCA TCE Tetrachloroethene	18 B 10 26 5 1250 5 16 5 1,800 D 500 57 6 5 2 J 5 14,000 D 730 500 14,000 D 1000 500 9 5
G105D (Duplicate)	Acetone Methylene chloride 1,1-Dichloroethene TCE 1,1,1-TCA	500 JB 1000 200 J 500 2,200 500 16,000 500 17,000 500
G106D	(None)	BDI
GE Well	Acetone Methylene chloride 1,1,1-TCA Tetrachloroethene	100 B 10 5 5 40 5 2 J 5
City Well No. 1	1,2-Dichloroethene TCE 1,1,1-TCA Tetrachloroethene	4 J 5 620 D 50 3 J 5 2 J 5

= Compound was also found in the blank.
= Estimated value, below detection limits.
= Compound was identified in an analysis at a secondary dilution factor.
= Below detection limit.
= Trichloroethene
1 1 1 Trichloroethene J

 \mathtt{BDL} TCE

1,1,1-TCA = 1,1,1-Trichloroethane

Only compounds detected in the samples are listed. Note:

Selected Materials from Canonie's Phase II Remedial Investigation Report (dated July 1989)

BEGGS000668

printed 07/11/2013 10:45AM by Sharon. Dowson p. 109/346

printed 07/11/2013

printed 07/11/2013 10:45 AM by Sharon Dowson p. 61/346

TABLE 2

AIR STRIPPING TOWER INFLUENT AND EFFLUENT TCE CONCENTRATIONS PHASE II REMEDIAL INVESTIGATION GENERAL ELECTRIC COMPANY MORRISON, ILLINOIS

<u>Sample ID</u> a	Date Sampled	TCE Concentration (ppm)
A-001	09-02-88	0.056
8-001	09-02-88	ND 0.0005
A-002	09-02-88	0.041
B-002	09-02-88	ND 0.005
A-003	09-09-88	0.031
B-003	09-09-88	ND 0.0005
A-004	09-16-88	0.025
B-004	09-16-88	ND 0.0005
A-005	09-26-88	0,043
B-005	09-26-88	ND 0.0005
A-006	10-03-88	0.03
8-006	10-03-88	ND 0.0005
A-007	10-03-88	0.016
B-007	10-03-88	ND 0.005
A-008	10-11-88	0.038
B-008	10-11-88	ND 0.0005
A-009	10-20-88	0.02
B-009	10-20-88	ND 0.0005
A-010	11-08-88	0.018
B-010	11-08-88	ND 0.0005
A-011	12-14-88	0.018
B-011	12-14-88	ND 0.0005
A-012	01-24-89	0.013
B-012	01-24-89	ND 0.0005
A-013	04-06-89	0.013
B-013	04-06-89	ND 0.0005
A-014	04-26-89	0.013

Canonie Environmental

printed 07/11/2013 10:45AM by Sharon. Dowson p. 62/348

TABLE 2

AIR STRIPPING TOWER INFLUENT AND EFFLUENT TCE CONCENTRATIONS PHASE II REMEDIAL INVESTIGATION GENERAL ELECTRIC COMPANY MORRISON, ILLINOIS (Continued)

<u>Sample ID</u> a	Date Sampled	ICE Concentration (ppm)
B-014	04-26-89	ND 0.0005
A-015	05-31-89	0.050
8-015	05-31-89	ND 0.0005
A-016	06-16-89	0.049
B-016	06-16-89	ND 0.0005

Notes:

Canonie Environmental

^aPrefix "A" denotes air stripping tower influent samples. Prefix "B" denotes air stripping tower effluent sample.

pfinted 07/11/2013 10:45AM by Sharon.Dowson p. 84/346

Ŧ	IONITORING WELL CONSTRUCTION DETAIL: PHASE II RENEDIAL INVESTIGATION GENERAL ELECTRIC COMPANY MORRISON, ILLINOIS
	É

	5.5				Surface	Well	Hater Level	Gravel Packed		Castro		;
11 No.	Boring No.	Zone	Northing Porthing	Easting	IEL MELL	EL T	(Ft. MSL)		(Ft.)	(In.)	Installation Date	
31010	61018	9	1,872,015	551,713	623.9	239.0	626.10	201.0-239.0	0.662-0.622	2.0	6-25-87	IEPA
1020	61020	9	:	!	7.11.7	82.2	713.6	54.0-79.0	66.3-82.2	0.5	6-23-87	JEPA
1038	G103 S	S	1	;	696.7	28.5	:	10.0-28,5	11.5-27.5	2.0	6-24-87	TEPA
1045	G104S	SS	:	:	624.3	22.0	626.9	6.4-22.0	7.2-17.7	2.0	6-18-57	IEPA
1040	61040	喜	i i	;	524.6	50.0	6.329	32.5-50.0	33.0-49.0	2.0	6-22-87	IEPA
1055	61055	S	1,874,306	550,749	534.3	24.0	635.81	7.0-23.0	8.0-24.0	2.0	6-22-87	JEPA
1050	61050	9	1,873,736	550,859	642.1	55.9	644.39	28.0-46.0	32,2-48,1	2.0	6-21-87	1EPA
1960	G9015	9	;	1	632.4	25.5	;	6.0-25.5	6.5-22.5	2.0	6-24-87	1EPA
67-C#	E8-1A	9	1,873,366 554,708	554,708	637.1	270.0	639.91	235.0-270.0	259.0-269.0	2.0	1-09-89	General Electric
an-21	EB-2	S	1,872,577	552,355	640.4	64.0	642.82	45.5-64.0	52.0-62.0	2.0	1-16-89	General Electric
3-E	E8-3	3	1,872,706	551,225	624.7	103.5	527.31	71 5.101 6	73 5.103 5 92 0.102 0 2 0 100 00	•		

printed 07/11/2013	10:45 AM Dy C	nozwou.norana	p. 02/340

		Ke 1	General Electric	General Electric	General Electric
		Installation Date	1-25-89	1-31-89	1-10-89
		Casing Diameter	2.0	0.2	2.0
		Screened Depths (Ft.)	83,5-93.5	73.0-83.0	5.6-10.8
		Gravel Packad Oupths IEL.)	58.0-96.0	48.0-88.5	7.1-10.8
•	IABLE 4 HOWITORING WELL CONSTRUCTION DETAILS PHASE II REMEDIAL INVESTIGATION GENERAL ELESTRIC COMPANY MORRISON, ILLINOIS (Costinued)	Water Level Messuring Point Elevation (Ft. NSL)	626.61	626.51	628.21
TABLE		Kell Gepth (Ft.)	98.0	88.5	10.8
MONITORIN PHASE	MOKITORIN PHASE GEM	Ground Surface Elevation (Ft. MSL)	624.3	624.0	526.2
		Lilen Easting	551,509	544,053	520,153
		Merthing	1,871,965 551,5	1,873,565	1,872,745
		Koni tored Zone	ន	SI	5
		Sail Boring No.	₽9-€	£8-5	:
		Meil No.	M4- 15	S1-5#H	#W6-8F

Location coordinates are referenced to Illinois state plane coordinates.
 Mater level measuring point is the top of well casing PVC extension.

Upper Dolomite Lower Dolomite Sanitary Sever Backfill

6-Sari Fordis IS - U IS - I IS - I printed 07/11/2013 10:45AM by Sharon. Dowson p. 66/346

TABLE 5
HONTORING WELL GEVELOPMENT
DATA SUMMARY
PHASE 11 REMEDIAL INVESTIGATION
GENERAL ELECTRIC COMPANT
HORRISON, ILLINOIS

				Volume			Ground Water Parameters	Parameters		
				of Mater	Duration of			Specific		
	Date	Date	Hathod of	Removed	Development		Tgmp.	Conductivity	Purge Water Clarity	c Clarity
Hell No.	Installed	Developed	<u>levelopment</u>	(da]]ons]	(hours)	징	গ্ৰ	(us/cu)	Start	Finish
MW1-LD	1-09-83	2-13-89	Bladder Pump	140	8.0	ì	48.5-51.5	0.7x10 ³ -3.7x10 ³	Cloudy Clear	Clear
MV2-UD	1-16-89	1-31-89	Bladder Pump	490	6.0	ı	55.2-57.2	10.9x102-11.2x102	Cloudy	Clear
MV3-UD	1-19-89	2-01-89	Bladder Pump	240	8.0	;	48.8-51.2	8.7x10 ² -8.9x10 ²	Cloudy	Clear
H24-15	1-25-89	2-11-2	Bladder Punp	200	7.5	:	45,3-50.0	9.2x10 ² -12.2x10 ²	Muddy	Clear
MIS-LS	1-31-89		Bladder Pump	780	7.0	ŀ	49.9-51.5	1.4x10 ² -7.8x10 ²	Muddy	Clear
	1-10-89		Taflon Bailer	w	1.0	ŀ	I	i	Muddy	Cloudy
61013	6-25-87		81adder Pump	900	7.2	6.8-8.7	50,3-51,1	6.7x10 ² -8.2x10 ²	Clear	Cloudy
E 1055	6-22-87		Tefton Bailer	₩,	2.5	1	ŀ	1	Muddy	Muddy
61050	6-21-87	2-16-89	Bladder Pump	190	₩.	:	\$1.5-56.5	5.7×10 ² -10.3×10 ²	Muddy	Muddy

Rotes:

 MW-Series wells installed by Canonie Environmental Services Corp. 6-Series wells installed by John Mathes & Associates, Inc.

*Mell was redeveloped by Canonie.

Exhibit 3

Selected Materials from Target Environmental's Soil Gas Survey Report (dated August 1989)

Exhibit 4

Selected Materials from GeoTrans'
Natural Attenuation and Groundwater Modeling Report
(dated October 2001)

Figure 4-13. Estimates of first order natural attenuation rates for TCE from time series plots.

102

Figure 4-14. Estimates of first order natural attenuation rates for 1,1,1-TCA from time series plots.

Table 2-5. Natural attenuation parameters measured during October 1999 sampling event.

Parameter	Method	Use
Dissolved Oxygen (DO)	Flow-through cell and CHEMets K-7402 + R-7512	Presence of DO ≥ 1indicates relatively oxidizing conditions. DO ≥ 1 mg/L inhibits biodegradation of PCE and TCE. However, DO can enhance biodegradation of DCE and VC. DO does not affect abiotic degradation of 1,1,1-TCA nor 1,1-DCA
Nitrate	Field: Hach 8039 -or- Lab: IC E300	Presence indicates relatively oxidizing conditions. Nitrate can inhibit biodegradation of PCE and TCE. Does not affect abiotic decay of 1,1,1-TCA.
Dissolved iron (Fe")	Hach 8146	Presence indicates anaerobic, iron-reducing conditions. Conditions are generally favorable for anaerobic biodegradation of all chlorinated compounds. Does not affect abiotic decay of 1,1,1-TCA.
Sulfate	Field: Hach 8051 -or- Lab: IC E300	Presence at relatively high concentrations (e.g., > 20 mg/L) may inhibit reductive dechlorination to some extent. Does not affect abiotic decay of 1,1,1-TCA.
Sulfide	Hach 8131 or CHEMets K-9510 + R-9510	Presence indicates anaerobic, reducing conditions; such conditions are favorable for anaerobic biodegradation of PCE, TCE, and 1,1,1-TCA.
Methane, ethane, and ethene	Kampbell et al, 1998 or SW3810 Modified	Presence of methane indicates strongly reducing conditions; conditions that are very favorable for anaerobic biodegradation of PCE, TCE, and 1,1,1-TCA. Ethane and ethene are endproducts of chlorinated solvent biodegradation, and therefore provide direct proof of contaminant destruction.
Oxidation- reduction potential (ORP)	Flow-through cell	Gross measure of whether conditions favor or disfavor anaerobic biodegradation of chlorinated solvents. In general, negative values favor anaerobic degradation, while positive values above 100 disfavor anaerobic degradation. Positive values can favor oxidative degradation of DCE and VC.
Chloride	Field: Hach 8-P -or- Lab: IC E300	This is a degradation end product indicative of chlorinated solvent destruction.
Total organic carbon (TOC)	SW9060	Presence indicates conditions that favor anaerobic biodegradation of PCE, TCE, and 1,1,1-TCA.

Staff Gage	Read By	Date	Time	Water Level (in.)	Area (sq. ft.)	Reading 1 (fps)	Reading 2 (fps)	Reading 3 (fps)	Flow Rate (cfs)
SG-1	KMB	(installed)		12.00	96.0	0.00	0.00	0.00	0.00
SG-2	KMB	(installed)		18.00	75.4	0.00	0.00	0.00	0.00
SG-3	КМВ	(installed)		20.00	111.2	0.00	0.00	0.00	0.00
SG-4	КМВ	(installed)		18.00	171.5	0.00	0.00	0.00	0.00
	40 Type (1)	1, 3, 1, 1- 1,		ray jan	ماللاي پار	1200 7	Darry British		
\$G-1	KMB	10/21/99		11.75	95.2	2.21	2.19	2.08	205.63
SG-2	КМВ	10/21/99		17.25	72.9	1.78	1.88	1.92	135.59
SG-3	кмв	10/21/99		19.50	109.4	0.79	1.05	0.79	95.91
SG-4	KMB	10/21/99		18.00	164.1	2.08	2.33	2.13	357.74
1925				, H	e en		<u>*</u>		
SG-1	KMB	10/27/99		11.25	93.5	2.20	2.56	2.47	225.34
SG-2	KMB	10/27/99		16.50	70.6	1.54	1.67	1.67	114.84
SG-3	KMB	10/27/99		19.25	108.5	1.10	1.08	1.11	118.99
SG-4	KMB	10/27/99		17.75	170.6	2.20	2.06	2.02	357.12
							1. 1.		
SG-1	KMB	11/2/99		10.25	90.1	2.23	2.33	2.26	204.83
SG-2	KMB	11/2/99		16.25	69.9	2.05	1.80	1.67	128.62
SG-3	КМВ	11/2/99		18.75	106.7	0.78	0.93	0.95	94.61
SG-4	КМВ	11/2/99		17.25	168.8	1.55	1.97	1.88	303.84
	1	• ६ छ ।			2247			1.192 1.11	12 1 ×
SG-1	КМВ	11/8/99		9.75	88.4	1.02	0.97	0.93	86.04
SG-2	КМВ	11/8/99		15.75	68.3	0.88	1.00	0.80	61.01
SG-3	кмв	11/8/99		18.25	107.8	0.36	0.44	0.35	41.32
SG-4	кмв	11/8/99		17.00	168.0	0.70	0.73	0.76	122.64
		·	11.						
SG-1	KMB	11/17/99	1:36 PM	8.75	85.1	0.90	0.98	0.90	78.86
SG-2	KM8	11/17/99	1:47 PM	15.00	66.0	0.82	0.82	0.71	51.70
SG-3	КМВ	11/17/99	12:56 PM	17.25	101.2	0.49	0.44	0.53	49.25
SG-4	кмв	11/17/99	1:12 PM	16.25	164.6	0.85	0.93	0.92	148.14

Summary of Hydraulic Conductivity Measurements at the Morrison Site. Table 3-2.

	Slug Test Result	Pump Test Result	Geometric Mean Pump Test K	
Well	(cm/sec)	(cm/sec)	(cm/sec)	Unit
G101D	2.8E-04	3.0E-06		Lower Dolomite
MW1-LD	ND1	9.4E-08		Lower Dolomite
			5.3E-07	Lower Dolomite
G104D	1.8E-02	9.3E-04	MANA	Upper Dolomite
G104D		2.0E-03 ¹		Upper Dolomite
G105D	ND	4.5E-03	HIRRANA.	Upper Dolomite
MW2-UD	5.5E-03	8.2E-05		Upper Dolomite
MW3-UD	1.4E-02	3.9E-04		Upper Dolomite
MW4-UD	ND	3.0E-05	HINGHING	Upper Dolomite .
			3.9E-04	Upper Dolomite
G105S	2.1E-05	ND		Upper Dolomite/Upland Deposits
IIIIIII			ND'	Upper Dolomite/Upland Deposits
G104\$	3.2E-03	9.3 x 10 ⁻⁴		Upper Dolomite/Lowland Deposits
G104S		1.2E-03 ²		Upper Dolomite/Lowland Deposits
MW4-LS	4.9E-02	2.4E-03	THINING THE	Upper Dolomite/Lowland Deposits
MW5-LS	3.8E-02	7.9E-04	IIIIIIII	Upper Dolomite/Lowland Deposits
HIMIN			1.2E-03	Upper Dolomite/Lowland Deposits

ND- Not Determined

(1) The geometric mean was calculated using single well test data for consistency.
(2) It should be noted that the tests with observation well provide more reliable values because they measure hydraulic properties over a greater zone of the aquifer and are less influenced by well losses. Close agreement between shallow and deep wells indicates low migration.

Value based on use of observation well G104S

²Value based on use of observation well G104D

Results of August 1999 analysis of chlorinated constituents in groundwater. Table 3-5.

Well ID	PCE (ug/L)	TCE (ug/L)	111-TCA (ug/L)	12-DCE (tot) (ug/L)	11-DCE (ug/L)	11-DCA (ug/L)	VC (ug/L)
G101D	0	7.4	0	0	0	0	0
G104S	0	. 0	0	0	0	0	0
G104D	0	0	0	0	0	0	0
G105S	0	0	7.4	0	2	0	0
G105D	130	4300	14000	0	7900	110	0
MW1-LD	1.4	45	52	1.1	8.4	2	0
MW2-UD	17	0	0	0	0	0	0
MW3-UD	0	4.5	0	0	0	0	0
MW4-UD	0	500	22	50	8.3	0	0
MW4-LS	5.2	210	16	0	0	0	0
MW5-LS	0	0	0	0	0	0	0

0 = non detect

Table 4-3. Effect of electron acceptor conditions and redox potential on feasibility of CAH reductive dechlorination.

Biodegradation Process	Electron Acceptor	Redox Potential (mV at 25°C, pH ≃7.0)	Feasibility of Reductive Dechlorination ¹
Aerobic respiration	O ₂	+820	
Denitrification	NO ₃ .	+740	
Manganese reduction	Mn(IV)	+520	Possible
Iron reduction	Fe(III)	-50	
Sulfate reduction	SO ₄ -2	-220	Optimal
Methanogenesis	CO2	-240	

Notes:

¹ Specification of "Possible" and "Optimal" ranges from Figure 6 of Region IV Suggested Practices (EPA 1997a); Bouwer,

Summary of attenuation rates estimated from time series plots for PCE, TCE, and 1,1,1-TCA. Table 4-4.

			PCE				TCE				TCA	
17.44		Atten.			Aug-99	1	Half	95%	Aug-99 Atten.	Atten.	Half	95%
Weii	Conc. (ug/L)	Kate (yr¹)			(ug/L)	Kate (yr¹)	(yrs)	rate	Conc. (ug/L)	Kate (yr¹)	(yrs)	C.I. Tor rate
SE-1 Wells												
G105D	130	0	No deci	No decreasing trend	4300	0.201	3.5	+ 0.0675	14000	0.183	3.8	± 0.1025
MW1-LD	1.4	0	No deci	No decreasing trend	45	0.336	2.1	+ 0.0950	52	0.37	1.9	± 0.101
MW4-UD	0				200	0	No decr	No decreasing trend	22	0	No dec	No decreasing trend
4rea Wide Network Wells	etwork W	elis										
G101D	0				7.4	0	No decr	No decreasing trend	0			
G104S	0				0				0			
G104D	0				ļ	0	No decr	No decreasing trend	0			
G105S	0				0				4.7	0	No dec	No decreasing trend
MW2-UD	17	0	No dec	No decreasing trend	0				0			
MW3-UD	0				4.5	0.442	1.6	+ 0.154	-	0	No dec	No decreasing trend
MW4-LS	5.2	0	No dec	No decreasing trend	210	0	No decr	No decreasing trend	16	0	No dec	No decreasing trend
MW5-LS	0				0				0			

Exhibit 5

Selected Materials from Appendix G of GeoTrans'
Natural Attenuation and Groundwater Modeling Report
(dated October 2001)

GRAPHIC MODEL LAYER TS/ 1 OMITE R 3 TE 4 R 5 R 6 R 6 R 7 R 8 R 6 R 6 R 6 R 7 R 7 R 7 R 8 R 7 R 8 R 7 R 8 R 8 R 7 R 8 R 8 R 8 R 8 R 8 R 8 R 8 R 8 R 8 R 8	HESS COI	0.2 (Upland Deposits) 7.0 (Lowland	7 Acres	4.4		¥	4	0.0085	0.0085	73 0.0085	
GLACIAL GLACIAL TILL TILL UNCONSOLIDATED SEDIMENTS/ UPPER DOLOMITE AQUIFER VALLEY FILL DEPOSITS UPPER DOLOMITE AQUIFER DOLOMITE AQUIFER SILURIAN DOLOMITE AQUIFER SHALE SHALE CONFINING	\$€	8		25	30	8	52	35	38	2 to 73	
		,		N	লে	A	נצו	9	7	80	NO FLOW
	HYDROSTRATIGRAPHIC UNIT	UNCONSOLIDATED SEDIMENTS/	UPPER DOLOMITE AQUIFER		UPPER	ACHIEFP		CAMED	DOLOMITE	AQUIFER	MAQUOKETA SHALE CONFINING
MONITORING ZONES UPLAND DEPOSITS LOWLAND DEPOSITS UPPER DOLOMITE DOLOMITE DOLOMITE	STRATIGRAPHIC	GLACIAL	ALLUVIUM. VALLEY FILL DEPOSITS				SILURIAN	DOLOMITE			MAQUOKETA
	MONITORING	UPLAND DEPOSITS	LOWLAND DEPOSITS		UPPER	DOLOMITE			DOLOMER		

Geofrans, in

4-2. Generalized hydrostratigraphic column with corresponding model layers and estimated range in parameter values.

Document 10 – Part 2

Expert Report of Konrad J. Banaszak, Genesis Engineering & Development, dated 11/13/2014

Zone	Description	Model Kx, Ky (ft/day)	Number of Field Values	Field Data Minimum (ft/day)	Field Data Maximum (ft/day)	Field Median (ft/day)
1	Lowland Deposits/ Upper Dolomite	7	4	0.11	6.7	2.8
2	Upland Deposits	2	0			
3	Upper Dolomite	14	6	0.09	12.8	1.9
4	Lower Dolomite	0.085	1	0.01	0.01	0.01

Exhibit 6

Table of Historical Groundwater Quality Data from Hard Hat's 2007 and 2008 Annual Groundwater Modeling Report (dated May 27, 2010)

APPENDIX 8-1

Comp	ฉนกล่	TOE	LILITEA	1,1 DCA	1,1000	1.2 DGE Total	PCE
IEPA CI	ASS I	0.006	0.7	0.7	0.007	0:07	0.005
Well Number	Date Sampled			Rosu	Hs (mg/L)		
MW-1ED	06/28/87	NS	NS NS	NS	NS	NS I	NS
MW-1LD	03/06/89	0.9	2	0.093	0.042	4.005	
MW-1LD	04/21/89	0.32	0.46	0.024	0.014	< 9.005	
MW-ILD	09/18/91	0.86	0.90	0.051	< 0.005	+0.005	0.04
MVV-1LD	12/10/91	0.52	1	0.065	0.062	<0.005	
MW 1LD	03/06/97	5.49	1.5	0.009	0.079	<0.005	
MW-1LD	06/01/92	0.33	1.3	0.005	<0.005	<0.005	
MW-ILD	09/09/92	0.36	1.2	0.007	0.095	<0.005	<0.005
MW-1LD	12/04/92	0.38	1 (1)	0.009	0.11	×8 005	< 9.005
MWILD	03/16/93	0.34	1.1	0.011	<0.005	<0.005	
MW-YLD	06/24/93	0.078	0.21	0.004	<0.001	0.003	0.002
MYV-11.D	09/15/93	0.11	0.21	0.004	<0.001	0.003	0.003
MW-1LD	12/16/93	0.048	0.7	0.002	0.22	0.002	0.001
MWHLD	03/16/94	0.019	0.33	0.002	0.014	=0.01	+0.001
MWHLD	06/15/94	0.13	0.21	+0.01	=0.01	*0.01	<0.01
MW-1LD	09/22/94	0.1	9.22	< 0.01	0.025	=0.01	10.01
MYVILD	11/29/94	0.1	0.2	0.002	0.026	0.002	0.002
MW-1LD	03/27/95	0.11	0.40	0.0047	0.040	0.0011	< 0.0/01
MWFILD (DUP)	03/27/05	0.09	0.31	<0.002	0.035	<0.002	
MVATLD	06/15/95	0.061	0.13	0.0016	0.019	0.0013	0.0019
MWATED	09/13/95	0.066	0.11	0.002	0.013	0.0014	0.0028
MW-1LD	12/07/95	0.068	0.17	0.002	0.02	0.001	0.0014
MW-1LD	06/14/96	0.083	0.14	0.002	0.017	<0.001	
MW-1LD	09/19/96	0.037	0.02	-0.001	0.012	0.0012	0.004
MW-1LD	12/11/96	0.025	0.074	<0.001	0.011	<0.001	<0.001
MW-1LD (DUP)	12/11/95	0.018	0.082	×0.001	0.013	=0.001	+0.001
MW-ILD (TRIP)	12/11/96	0.039	0.084	<0.001	0.012	< 0.001	< 0.001
MW-1LD	03/10/97	NOTS	AMPLED DU	TO AN OF	STRUCTION	N IN THE WELL	CASING
MYV-1LD	09/23/97	0.04	0.061	0.0022	0.01	0.001	0.0016
MW-1LO	04/07/98	0.071	0.12	0.0022	0.03	<0.001	0.0016
MW-1LD	11/13/96	0.046	0.094	0.0025	0.017	< 0.001	
MW-TED.	02/04/99	0.071	0.11	0.0022	6.026	0.001	0.0011
MW-ILD	08/19/99	D.GAS	0.052	0.002	0.0084	0.0011	0.0014
MW-1LD	06/13/00	0.078	0.14	0.0019	0.031	< 0.001	0.001
MW-1LD (DUP)	06/13/00	0.077	0.16	0.0015	0.039	<0.001	0.0014
MW TLD	08/20/00	0.051	0.075	0.0016	0.022	< 0.001	0.0017
MW-1LD	08/20/01	0.048	0.06	0.0016	0.018	<0.001	<0.001
MW-ILD	11/06/01	0.040	0.082	0.0016	0.018	0.0011	<0.001
MW-1LD-P8	06/27/02	0.030	0.072	0.0013	0 039	×0.001	
MW-1LD-PB	06/11/03	0.030	0.027	0.0025	0.015	<0.001	
MW-TLD-PB	10/18/04	0.020	0,012	0.0029	0.012	<0.001	< 0.001
MW-1LD-PB	11/07/06	0.020	0.006	0.0036	0.61	<0.001	< 0.001
MW-ILD-PB	11/07/06	0.014	×0.001		0.0003	<0.001	+0.001
MW-1LD-PB	10/30/07	0.011	0.0024	0.0022	0.0072	<0.001	
MW-1LD-PB	01/05/09	0.011	0.0023	0.0024	0.0055	<0.001	

APPENDIX 8-1

Se compo	mound.	ALLA	4 4 4 7 7 m	4.1.004	11.009	F. P. PRINT TANK	String:
SEPA CI	LASS I	0.006	3.1	6.7	0.007	0.07	0.006
Wall Number	Cata Sampled			Resu	its (mg/L)		
MW-45,63	E-06/28/81	74.5	76	10.10	145	N 1 N 5	100
MVV-4UE)	03/06/89	NS.	148	No.	74.0	195	N/S
WWW.ALCO	64/21/98	NS	145	NS	ME	165	NS
MW-4UD	09/16/91	271	0.02	0.005	0.005	0.038	0.02
MW AUD	12/10/91	0.41	+0.005			0.085	
MW-4UD	03/06/92	0.18	-0.005			0.034	
WW-AUD	06/01/92	0.46	+0.005		<0.005	0.052	
MWARUD	09/09/92	0.13	-5.005	×0.005	<0.005	0.026	
uwaUb	12/04/92	0.38	40 005	40.005	0.008	0.083	
MW-4LID	03/16/93	0.42	-0 gos		×0.005	0.11	
WVEALIS	06/24/93	0.12	×0.003		40.001	0.029	
MW-4UD	99v15z93	0.3	0.008	×0.001	0.001	0.042	0.001
MW-4LID	12/16/93	0.058	×0.001		×0.001	0.005	
MVV-4UD	03/16/94	0.7	*0.001		0,002	0.084	0.003
MW-4UD	05/15/94	0.64	*0 010		1000	0.042	
MVV-4UD	09/27/94	0.79	*0.040	FO 0.60	<0.040	-0.040	+0.04
MVV-4UD	11/29/94	0.33	0.002	*0.001	*0.001	0.053	0.002
MW-4UD	03/07/9/5	0.42	0.0018		VID 000 1	0.052	0.002
MW-AUD	00/15/95		-0.001		KD 001	+0.001	0.010
MPV-4LID (DILIP)	06/15/95	0.04	0.0012		10.001	9.0627	0.9011
MW-400	09/13/95	0.250	*b 66 t		x0301-	0.021	0.001
EN AGE	120795	0 670	0.006		10.001	0.016	0.003
PSS-41,70	06/14/95	0.19	0.002		×0.001	0.019	
MAN AUD (DUP)	08/14/96	0.15	0.002			0.018	
MW 4UD (DUP)	09/19/96	0.470	0.009		+0.00 t	0.039	0.002
MW-4UD	09/19/96	0.47	0.009		0.003	0.038	0.002
MW-4UD	12/11/96	0.2	0.004		+9.002	0.015	
MWAUD (DUF)	12/11/96	6.3	0.004		¥10.0002	0.016	
MWAUO	03/10/97	0.046	10001		×0.001	0.007	-0.00
MW-4UD (DUP)	03/10/97	0.089	+0.001	40.001	NO 001	0.007	
MW 4UD	09/23/97	0.6	0.016		0.0064	0.047	0.002
MW-4UD	04/07/98	0.45	+0.001		0.001	0.037	0.003
MW-4UD	11/12/98	0.80	0.023	70 005	0.003	0.063	
MW-4UD	02/04/99	0.63	0.02	<0.005	0.011	0.055	
MW-4UD	08/18/99	0.5	0.022	+0.005	0.0083	0.05	×0.005
MW-4UD	06/12/00	0.40	0.023	+0.005	9.014	0.052	
MW AUD	08/22/00	D 43	0.021	≠0.005	0.0079	0.018	
MW-4UD	06/20/01	0.32	0.021		0.011	0.043	
MW-4UD	11/15/01	0.21	0.021	+0.006	0.0093	0.034	0.002
MW AUD PB	11715/01	0.006	0.006	0.001	0.0034	0.0172	0.002
MW-4DD	06/27/02	0.14	0.02		0.012	0.043	0.0021
MW-4UD-P8	26/27/02	0.07	0.0068	40,001	0.0063	0.066	*0.00
MW-4UD-8'8	06/11/03	8.02	0.0014	+0.001	0.0011	0.0093	
MW 4UD PB	10/15/04	0.079	0.003	10.001	0.0027	0.022	
MW.4LIE) PR	11,07,05	0.021	0.0022		0.0023	0.0192	
MW-41/01FB	11.07.6%	0.018	0.0020		0.0023	0.0195	
MW-41/0-FB	10/30/07	0.014	0.0012	41.001	0.0018	0.0091	
MW 4UD PB	01/05/09	0.018	0.0018		0.0021	0.012	

APPENDIX B-1

Ser market	outself.	16.6	1 T T T T T T T T	TERCA	1146	TO THE THEFT	mr-e
(EPA CL	A38 I	0.008	0.2	0.7	0.007	0.07	0.005
Well Number	Date Sampled			Resu	its (mg/L)		
9-1050	GB-740-63	14	BOOK A MICE	0.012		0.057	0.003
1000	03/06/89	1.4	0.92	0.66	0.6	0.23	
	D4221/89	NS	MB	NS	NS.	145	N.S
	09/18/91	18	286	0.022		0.044	0.054
G-1050	12/10/91	16	24	0.069	4.1	0.093	0.068
9-1050	03/06/97	21	24	0.041	8.3	0.057	0.06%
	06/01/92	20	41 41 41 4	0.061	9.6	0.047	0.11
G 1050	09/09/92	12	24	0.1	0.005	<0.005	0.084
G-105D	12/04/92	14	31	0.083	9.1	0.008	0.077
	0/3/16/93	14	28	0.074	41	0.1	×0.005
	00/24/93	9.5	124	0.064	35.7140	0.06	0.12
	09(15/9)	8.4	22	0.071	11	0.11	0.11
	12/16/93	- 11		0.097	1.1	0.14	0.11
	03/16/94	10	21	0.07	A 6 11 6 6	0.12	0.13
	06/15/94	4.5	18	0.065		0.1	0.067
	09/02/94		20	0.084		0.14	0.079
	11/20/04	9.6	10	0.094		0.24	9.13
	203727 N/S	8.4	300.34	2.12	****	3000 15	0.91
G-1050	96/15/95		14	VO.5	6.6	108	
G-1080	.09/13/85	4	1 11	70.1	4.6	30.1	
	12/07/95	6.4			6.6		9.12
	06/14/96	4.7	14	=0.05	5.4	×0.05	0.082
G-1050	09/19/96	3.8	1.0	0.087	4.8	0.067	DOTE
	12/11/96	8.7	14	10.1	18	10.1	0.1
G-105D	03/10/97		14	0.088	6.5	0.11	0.15
G-105D	09/22/97	4.9	15	0.13	7.8	0.093	0.13
	09/22/97	4.7	14	0.14	6.0	0.099	0 14
G-105D (DUP)	04/07/98	8.6	10	0.083	6.3	0.084	0.16
G-1050	the first better of the best of the first of the second	5.1	0.0	0.08	5.8	0.082	0.10
C-1050 (DUP)	04007796	6.4	Commission Colombia (1995)	10.1	4.8	-0.1	
G-1050	11/13/98		13		AND DESCRIPTION OF THE PARTY OF	Marine Service and a resident of the control of the	9.3
G-1950 (CUP)	11/13/98	6.3	13	40.1	5.4	<0.1	0.18
0-1050	02/04/99	6.4	13	0.31	8.3	+0.1	0.22
	02/04/99	1.1	11	0.1		10.1	0.24
G-195D (DUP)	08/18/99	4.3	14	0.1	7.4	40.1	0.14
	08/18/99	4.3	14	0.11	1.4	40.1	0.13
	06/12/00	6.4	7.8	0.12	6.7	<0.1	0.19
G-1050	06/22/00	1.5	18	0.11	6.4	0.014	0.1
G-1050	06/20/01	2.4	8.3	0.1	5.4	49.9	9.12
	11/07/01	3.3		0.11	4.4	10.1	0.11
G-105D	06/27/E/2	1.6	8.3	+0.050	4.7	-01	0.053
	06/27/02	0.26	0.27	0.14	0.92	0.059	<0.01
0.1050	11/25/02	2.6	5.8	0.098	4.1	40.05	<0.01
G-1050 (DUP)	11/25/02	2.6	* 4	0.098	4	0.021	-0.01
G-105D-PB	11/28/07	0.12	0.041	0.22	0.96	0.023	-0.01
	11/25/02	9.12	0.042	0.25		0.061	-0.01
G-1650-PB	06/11/03	0.26	0.11	0.18	0.7	0.058	
G-1050	06/11/03	4.0	5.4	0.098	4.0	< 0.05	0.13
G-1050-PG	10/18/04	0.11	0.026	0.1	0.37	=0.05	0.13
G-1650-PB	11/07/05	0.026	0.01	0.11	9.43	0.03	0.0027
G-1050 FB	1.1/07/06	0.03	0.0021	0.064	5.11	0.017	<0.001
	10/20/07	0.028	0.002	0.018	0.097	0.014	10.001
G-1050-PB	01/05/09	0.013	0.0011	0.023	0.032	9.0075	0.0021
G-1050-PH (DUP)	01/05/09	0.012	0.001	0.022	0.030	0.0071	0.002

- 2 y IERA Class i greundwiser eténdants form Retors Amministranya Cursa. Tina 15, Fian 747. Cerant Approach to Correspon Artisti Chiedona (TACO), attended Merch 2001
- 3) \$0s, denotes below detectors and detector tests not provided on the analysis.
- A 1 NO. in Year exemplied.
- 3) (3) indicates duplicate sample.
- 6) righ, a miligrame per limit.
 2 (TCE a sepagrosmans; 1 / 1.TCA + 1 1.1 remonstration; 1 1.DCA + 1 1 reconstration; 1.1 DCE + 1.1 reconstration. 1.50002~palab + ca.A~rams + 2.6cm/coeffices. ~PCE * is combinate thems. I + 2.5~PCE = 1.12.3~defracts or combined to the combined transfer of the coefficients of the coefficient of the
- it) their indicates strepping was directed
- 9.) Bold and highlighted indicates value at in above Class I proundwater standard
- (1.) PB is passion diffusion beginning
- 12 (U.s. prosperses an expressive value)
- 13) D.+. Compound standing in an analysis at a secondary distant factor
- to obtain the reported result.
- 15 (TCB) springles recovered from MVs.4-20: between September 1991 and November 1994 disease by Nationality
- 16.) TOE and 1.1.1 TOA samples recovered from G-1050 obtains by the listicisticity to obtain the reported result Available for the remaining analyses was performed on discled elements beginning in Julia 1991.

APPENDIX B-2

Compou	nd	TCE	1,1.1-TCA	1,1-DCA	1,1-DCE Total	1,2-DCE Total	PCE	1,1,2,2-PC
IEPA CLA		0.005	0.2	0.7	0.007	0.07	0.005	
Well Number	Date Sampled			1	Results (mg/L)	Reserved to the second		
MW2-UD	3/4/1989	0.018	< 0.005	< 0.005	× 0.005	< 0.005	< 0.005	< 0.005
MW2-UD	3/27/1995	< 0.001	< 0.001	+ 0.001	< 0.001	< 0.001	0.002	< 0.001
MVV2-UD	6/15/1995	0.031	0.0013	< 0.001	× 0.001	< 0.003	< 0.001	< 0.001
MW2-UD	9/24/1997	× 0.001	< 0.001	+ 0.001	< 0.001	< 0.001	0.0065	< 0.001
MW2-UD	4/6/1996	o 0.001	= 0.001	< 0.001	< 0.001	€ 0.001	< 0.001	< 0.001
MW2-UD	8/17/1999	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001	0.017	< 0.001
MW2-UD (DUP)	8/17/1999	< 0.001	× 0.001	< 0.001	< 0.001	< 0.0001	0.026	< 0.001
MW2-UD	8/22/2000	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.028	< 0.001
MW2-UD	6/20/2001	< 0.001	< 0.001	× 0.001	< 0.001	< 0.001	0.047	< 0.001
MW2-UD	6/27/2002	< 0.001	× 0.001	< 0.001	× 0.001	< 0.001	0.044	< 0.001
MWZ-UD (DUP)	6/27/2002	< 0.001	# 0.001	< 0.001	< 0.001	< 0.001	0.044	< 0.001
MW2-UD-PB	6/27/2002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.023	< 0.001
MW2-UD-PB (DUP)	6/27/2002	< 0.001	4 0 001	< 0.001	< 0.001	× 0,001	0.032	< 0.001
MW2-UD-PB	6/11/2003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.010	< 0.001
MW2-UD-PB (DUP)	6/11/2003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.010	< 0.001
MW2-UD-PB	10/18/2004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.032	< 0.001
MW2-UD-PB (DUP)	10/18/2004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.034	< 0.001
MW2-UD-PB	11/7/2005	< 0.004	< 0.001	+ 0.001	< 0.001	* 0.001	0.040	< 0.001
MW2-UD-PB (DUP)	11/7/2005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.038	< 0.001
MW2-UD-PB	11/7/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.020	< 0.001
MW2-UD-PB (DUP)	11/7/2008	< 0.001	< 0.001	< 0.001	4 0.001	< 0.001	0.038	< 0.001
MW2-UD-PB	10/30/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.030	< 0.001
MW2-UD-PB (DUP)	10/30/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.032	< 0.001
MW2-LID-PB	1/5/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.032	< 0.001
MW3-UD	3/2/1989	0.022	< 0.005	< 0.005	< 0.005	× 0.005	< 0.005	< 0.005
MW3-UD	3/27/1995	0.038	0.0012	< 0.001	< 0.001	× 0.001	< 0.001	< 0.001
MW3-UD	6/15/1995	0.029	0.0013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW3-UD	9/24/1997	0.011	0.0024	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW3-UD	4/6/1998	0.012	0.0012	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW3-UD	8/18/1999	0.0045	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW3-UD	8/21/2000	0.0048	0.003	< 0.001	0.001	< 0.001	0.0041	< 0.001
MW3-UD	6/20/2001	0.013	0.008	< 0.001	0.0024	< 0.001	0.021	< 0.001
MW3-UD-PB	6/27/2002	0.0035	0.003	< 0.001	0.0014	< 0.001	0.0035	< 1.001
MW3-UD-PB	6/11/2003	< 0.001	< 0.001	< 0.001	< 0.001	0.0012	< 0.001	= 0.001
MW3-UD-PB	10/18/2004	< 0.001	0.0015	< 0.001	< 0.001	0.0012	0.0079	< 0.001
MW3-UD-PB	11/7/2005	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001
MW3-UD-PB	11/7/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW3-UD-PB	10/30/2007				DUE TO DAMAGE			
MW3-UD-PB	1/5/2009	-	A STATE OF THE PARTY OF THE PAR	Progress and the Section of the Sect	DUE TO DAMAGE			
MW4-LS	3/4/1989	0.29	D < 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
MW4-LS	3/27/1995	0.34	0.011	< 0.0025	< 0.0025	< 0.0025	< 0.006	< 0.0025
MW4-LS	0/15/1995	0.08	0.0027	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW4-LS	9/24/1997	0.38	0.014	< 0.001	0.0031	0.0012	0.0028	< 0.001
MWW-LS	4/7/1998	0.29	0.014	< 0.001	0.0032	0.0011	0.0037	= 0.001
MVV4-LS	5/16/1999	0.21	0.016	= 0.001	- 0.001	< 0.001	0.0052	< 0.001
MW4-LS	8/22/2000	0.27	0.010	< 0.001	0.0025	The state of the s	0.0036	< 0.001
MW4-LS	8/20/2001	0.28	0.011	101.50.10	0.0029	< 0.001	0.0057	< 0.001
MWALE	11/15/2001	0.26	0.016	< 0.002	- 0.002	< 0.002	0.0061	< 0.002
WW4-LS-P8	6/27/2002	0.19	0.0086	< 0.002	0.0035	< 0.002	0.0028	< 0.002
MW4-LS-PB	6/11/2003	0.18	0.0082	< 0.001	0.0032		0.0026	< 0.001
MW4-LS-P8	10/18/2004	0.23	0.0170	< 0.001	0.0041	< 0.002	0.0086	< 0.001
MW4-LS-P8	11/7/2005	0.24	0.008	0.00	The state of the s	< 0.002		< 0.001
MW4-LS-PB	11/7/2006	0.20	0.0083	< 0.001	0.0038	< 0.001 < 0.002	0.012	< 0.001
MW4-LS-PB	10/30/2007	0.26	0.0086	< 0.003	Land de Control of the Control of th	And the last of the property of the first of the contract of t		4 9 002
MW4-LS-P8	1/5/2009	0.29	0.007	< 0.001	0.0037	0.0012	0.021	× 0.001

APPENDIX 8-2

Compo	and	TCE	1.1.1-TCA	1,1-0CA	1,1-DCE Total	1,2-DCE Total	PCE	1,1,2,2-P
IEPA CL	ASS I	0.005	0.2	0.7	0.007	0.07	0.005	
Wall Number	Date Sampled				Results (mg/L)			
MVAS-LS	3/5/1989	0.014		< 0.005	< 0.005	< 0.005	< 0.005	× 0.005
MWS-LS	3/27/1995		= 0.001	× 0.001	< 0.001	< 0.001		< 0.001
MWS-LS	8/15/1995	< 0.001	< 0.001	+ 2.001	# 0.001	× 0,001		< 9.001
MVV5-LS	9/23/1997	< 0.001	+ 0.001	< 0.001	× 0.001	× 0.001	< 0.001	< 0.001
MWS-LS	4/0/1998	< 0.001	+ 0.001	× 0.001	× 0.001	< 0.001	< 0.001	< 0.001
MVA5-LS-	6/18/1999	< 0.001	+ 0.001	+ 0.001	< 0.001	< 0.001	< 0.001	< . 0.001
MVA5-LS	8/21/2000	< 2.001	+ 0.001	* 0.001	4 0.001	× 0.001	< 0.001	< 0.001
MWS-LS	6/20/2001		= 0.001	< 0.001	× 0.001			4 0.001
MWS-LE-PB	6/27/2002	= 0.001	# 0.001	× 0.001	< 0.001			< 0.001
MW5-LS-PB	6/11/2003	< 0.001	< 0.001	= 0.001	× 0.001	< 0.001	< 0.001	< 0.001
MWS-LS-FB	10/18/2004	× 8 801	= 0.001	= 0.001	≠ 0.001	< 0.001	< 0.001	= 0.001
MW5-LS-PB	11/7/2005	< 0.001	× 0.001	× 0.001	< 0.001	× 0.001	< 0.001	4 0 001
MWW8-LS-PB	11/7/2006	× 0.001	a 0.001	+ 0.001	× 0.001			< 0.00t
MW5-LS-PB	10/30/2007	< 0.001	< 0.001	× 0.001	× 0.001	< 0.001	< 0.001	< 0.001
MVV5-LS-PR	1/5/2609	< 0.001	< 0.001	× 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G101D	6/27/1987	0.062	BOL	BOL	BDL	BDL.	800	BOL
	3/3/1989	0.004	J = 0.005	e 0.005	+ 0.005	< 0.005	+ 0.005	4 0 005
	3/27/1995	0.0094	0.0034	< 0.001	0.0016	* 0.001		+ 0.001
G1010	6/14/1995	0.008	= 0.001	- 0.001	= 0.001	< 0.001		< 0.001
01010	9/24/1997	0.0063	= 0.901	< 0.001	* 0.001	< 0.001	< 0.001	< 0.001
Gt01D	4/7/1098	0.0087	= 0.001	< 0.001	+ 0.001	× 0.001	< 0.001	< 0.001
	8/18/1999	0.0074	K 0.001	= 0.001	< 0.001	< 0.001	4 G 001	+ 0.001
	8/21/2000	0 0009	4 0 001	- 0.001	= 0.001	< 0.001		- G.001
G101D (DUP)	5/20/2001	0.0063	€ 0.001	< 0.001	+ 0.001	× 0.001		< 0.001
G101D	6/20/2001	0.0062	= 0.001	× 0.001	× 0.001	< 0.001	< 0.001	- 0.001
G101D	11/12/2001	0.0061	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G1010-P8	6/27/2002	0.0037	< 0.001	* 0.001	× 0.001	× 0.001	< 0.001	< 0.001
G1010-P8	6/11/2003	0.0130	= 0.001	× 0.001	e 0.001	< 0.001		< 0.001
G191D-P8	10/19/2004	0.0140	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	F 0 001
G10:D-P8	11/7/2005	0.014	€ 0.001	= 0.001	< 0.001	< 0.001	< 0.001	= 0.00t
G1010-P8	11/7/2006	0.023	× 9.061	× 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	10/30/2007	0.0042	+ 0.001	- 0.001	- 0.001	0.0049	< 0.001	= 0.001
G101D-PB	1/5/2009	< 0.001	# 0.001	4 0 001	× 0.001	0.006	< 0.001	4 0.001
G105S	6/30/1987	BOL	800	801	BOL	BOL	BOL	BOL
G1058	3/22/1989	* 0 005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005
G1053	3/27/1995	< 0.001	= 0 001	× 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	614/1995	× 0.001	= 0.001	< 0.001	< 0.001	< 0.001	< 0.001	× 0.001
	923/1997	- 0.001	0.0029	0.0013	< 0.001	+ 0.001	< 0.001	× 0.001
G1055	4/7/1098	- 0.001	0.0091	- 0.001	4 0 001	- 0.001	- 0.001	< 0.001
G1065	8/19/1999	* 0.001	0.0074	# 0.001	0.002	< 0.001	< 0.001	< 0.001
G1058	8/22/2000	« 0.001	0.0678	0.0025	= 0.001	< 0.001	< 0.001	= 0.001
G1086	6/20/2/001	the state of the same	14	OT SAMPLED	DUE TO DAMAGE	D WELL CASIN	G	A CONTRACTOR
	11/8/2001	× 0.001	0.0087	- 0.001	= 0.001	< 0.001		4 0 001
G1055-P8	6/27/2002	< 0.001	0.0051	* 0.001	< 0.001	# 0.001	< 0.001	× 0.001
G1065-PB	6/11/2003	< 0.001	0,0091	0.0019	0.001	< 0.001	4 0.001	= 0.001
G1055-P8	10/18/2004	× 0.001	= 0.001	0.0037	< 0.001	< 0.001	< 0.001	< 0.001
G1058-P8	11/7/2005	* p.pa1	+ 0.001	0.0022	< 0.001	< 0.001	< 0.001	× 0.001
G1055-PB	11/7/2006	- 0 001	< 0.001	0.002	× 8.001	= 0.001	< 0.501	- 0.001
G1065-PB	10/30/2007	# 0.001	× 0.001	0.002	× 0.001	* 0.001	< 0.001	< 0.001
G1055-P8	1/5/2/009	0.0021	0.015	0.0018	× 0.001	< 0.001	< 0.001	- a gai

APPENDIX B-2

HISTORIC GROUNWATER QUALITY DATA GE MORRISON FACILITY MORRISON, ILLINOIS

Compo	ound	TÇE	1,1,1-TCA	1,1-DCA	1,1-DCE Total	1,2-DCE Total	PCE	1,1,2,2-PCE
IEPA CL	ASSI	0.005	0.2	0.7	0.007	0.07	0.005	•
Well Number	Date Sampled				Results (mg/L)			
G104S	6/27/1987	BDL	BDL	BDL	BDL	BDL.	BDL	BDL
G104S	3/27/1995	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	6/14/1995	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	9/23/1997	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	4/6/1998	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	8/18/1999	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	8/21/2000	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S	6/20/2001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	6/27/2002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	6/11/2003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	10/18/2004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	11/7/2005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	11/7/2006	0.0014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	10/30/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104S-PB	1/5/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	6/27/1987	BDL	BDL	BDL	BDL_	BOL	BDL	BDL
G104D	3/27/1995	< 0.001	< 0,001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	6/14/1995	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	9/23/1997	0.0017	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	4/6/1998	0.0023	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	8/18/1999	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	8/21/2000	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D	6/20/2001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D-PB	6/27/2002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D-PB	6/11/2003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D-PB	10/18/2004	< 0.001	< 0.001	< 0.001	< 0.001	0.0011	< 0.001	< 0.001
G104D-PB	11/7/2005	0.0048	< 0.001	< 0.001	< 0.001	0.0011	< 0.001	< 0.001
G104D-PB	11/7/2006	0.0036	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D-PB	10/30/2007	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
G104D-PB	1/5/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Notes:

- 1.) EPA = Illinois Environmental Protection Agency
- 2.) IEPA Class I groundwater standards from Ittinois Administrative Code, Title 35, Part 742, Tiered Approach to Corrective Action Objectives (TACO), amended March 2007.
- 3.) BDL denotes below detection limit; detection limits not provided on the analytical data sheets from the Phase 1 Investigation
- 4.) (D) indicates duplicate sample.
- 5.) mg/L = milligrams per kter
- 8.) TCE = trichtoroethene; 1.1.1-TCA = 1,1.1-trichtoroethene; 1.1-DCA = 1,1-dichtoroethene; 1.1-DCE = 1.1=dichtoroethene; 1.2-DGE (total) = cis & trans-1,2-dichtoroethene; PCE = tetrachtoroethene; 1.1.2,2-PCE = 1,1,2,2-tetrachtoroethene
- 7.) Bold indicates compound was datected.
- 8.) Bold and highlighted indicates value at or above Class I groundwater standard.
- 9.) < \pm indicates the analyte not detected at the stated reporting limit.
- 11.) PB = passive diffusion bag sample
- 12.) J = indicates an estimated value.
- 13.) D = Compound identified in an analysis at a secondary dilution factor.

Exhibit 7

Selected Materials from MWH's Focused Site Investigation (FSI) Report (dated April 2013)

Case: 3:13-cv-50348 Document #: 40-2 Filed: 02/27/15 Page 17 of 22 PageID #:1044

Document 10 – Part 3

Expert Report of Konrad J. Banaszak, Genesis Engineering & Development, dated 11/13/2014

Case: 3:13-cv-50348 Document #: 40-3 Filed: 02/27/15 Page 8 of 22 PageID #:1057

Case: 3:13-cv-50348 Document #: 40-3 Filed: 02/27/15 Page 9 of 22 PageID #:1058

Case: 3:13-cv-50348 Document #: 40-3 Filed: 02/27/15 Page 11 of 22 PageID #:1060

Table 1 Groundwater Monitoring Well Summary GE Morrison Facility Morrison, IL

Well ID	Туре	Screened Formation	Well Depth (feet bgs)	Date Installed	Notes
G101D	Stickup	LD	239	Phase I (1987) ^a	
G102D	Stickup	UD	82.2	Phase I (1987) ^a	Not Sampled ¹
G103S	Stickup	LS	27.5	Phase I (1987) ^a	Not Sampled ¹
G104S	Stickup	LS	17.7	Phase I (1987) ^a	
G104D	Stickup	UD	49	Phase I (1987) ^a	
G105S/R	Stickup	US	24	Phase I (1987) ^a	Replacement Well ²
G105D	Stickup	UD	48.1	Phase I (1987) ^a	
G106D	Stickup	UD	22.5	Phase I (1987) ^a	Not Sampled ¹
MW1-LD	Stickup	LD	269	Phase II (1988-1989) ^b	
MW2-UD	Stickup	UD	62	Phase II (1988-1989) ^b	
MW3-UD	Flushmount	UD	102	Phase II (1988-1989) ^b	Damaged ³
MW4-LS	Stickup	LS	93.5	Phase II (1988-1989) ^b	
MW4-UD	Stickup	UD	91	Phase II (1988-1989) ^b	
MW5-LS	Flushmount	LS	83	Phase II (1988-1989) ^b	
MW6-BF	NA	BF	10.8	Phase II (1988-1989) ^b	Abandoned ⁴
MW7-LS	Flushmount	LS	100	FSI (2011) ^c	
MW8-LS	Flushmount	LS	96	FSI (2011) ^c	
MW-9	Flushmount	WT	19.5	FSI (2012) ^c	
MW-10	Flushmount	LS	101.5	FSI (2012) ^c	

Notes:

bgs - below ground surface

BF - Backfill

LD - Lower Dolomite

LS - Lower Unconsolidated Sediments

UD - Upper Dolomite

US - Upper Unconsolidated Sediments

WT - Water Table

^a Phase I Investigation conducted by John Mathes & Associates (1987) for IEPA.

^b Phase II Investiation conducted by Canonie Environmental (1988-1989) for General Electric.

^c Focused Site Investigation conducted by MWH (2011-2013) for General Electric.

¹ Wells G102D, G103S and G106D are not sampled as part of General Electric's ongoing investigation.

² G105S/R installed as replacement well for G105S.

³ MW3-UD is damaged.

⁴ MW6-BF was installed in backfill of existing city sewer, it was abandoned by Canonie.

Table 3
Soil Sample Results
Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

		Expos	Exposure Route-Specific Values for Soils	cific Values for	Soils	Crosmdwater Inspetion	w Inchesion									-					-		
		Industrial - Commercial	ommercial	Construction Worker	on Worker	Exposure Route Values	oute Values																
Соптонно	Ziel I	Ingestion	Inhalation	Ingestion	Inhalation ug/kg	Class I	Class II	SB01-5	SB01-12.5	SB02-6	SB02-8.5	SB03-4	SB03-4 Duplicate	SB03-12	SB04-8		-		SB06-15			SB08-28 S	B09-20
(SW846 8260)								12/5/2011	12/5/2011	2/5/2011	12/5/2011	12/5/2011		12/5/2011	12/5/2011	-	-	-	\vdash		12/5/2011 12		12/6/2011
-Trichloroethane	ug/kg	1	1,200,000	1	1,200,000	2,000	009'6	2.8.3	6.2	2.5.3	99	20	12	7.2	2.3.3	3.9.1	3.5.3	3.8.1					16
.2-Tetrachloroethane	µg/kg	1	1	1	1	ī	1	4.7 U	4.2 U	4.4 U	4.4 U	4.5 U	4.4 U	49U	4.1 U	4.5 U	4.4 U	4.2 U.				-	4.0 U
2-Trichloro-1.2.2-trifluoroethane	ug/kg	1	1		1	1	1	4.7 U	4.2 U	440	440	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	4.2 U	-		2,900 U 1	1,400 U	40 D
2-Trichloroethane		8,200,000			1.800,000	20	300	4.7 U	4/2 U	4.4 U	440	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	42U	290 %	2,700 U	200	1200	4.0 U
Dichloroethane	-	200,000,000			130,000	23,000	110,000	4.7 U	4.2 U	4.4 U	44U	4.5 U	4.4 U	4.9 U	4.10	4.5 U	4.4 U	42U				15,000	37
Dichloroethene	-	100,000,000		0	3,000	09	300	4.7 U	4.2 U	4.4 U	2.5.3	1.2.3	0.91 J	4.9 U	4.1 U	4.5 U	4.4 U	42U				15,000	140
4-Trichlorobenzene	ug/kg	20,000,000			920,000	5,000	53,000	4.7 U	4.2 U	4.4 U	4.4U	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	0.91 J	42U	290 U	2,700 U	2,900 U	1,400 U	4.0 U
Dihromo-3-chloropropane	ug/kg	4,000	17,000		110	63	20	4.70	4.2 U	1771	1257	4.5 U	277	267	4.17	1.51.	240	4.2 U			-	12 00.	207
-Dibromoethane (EDB)	-	2,900	120		160	0.4	4	1770	4.20	277	277	450	4.4 []	267	4.17	.75%	4.40	4.20				.2 00.	1007
Dichlorobenzene	-	180,000,000	560,000	18,000,000	310,000	17,000	43,000	4.70	420	4.4 U	440	4.5 U	4.4 U	4.9 U	4.10	4.5 U	4.4 U	42U			H	1,400 U	4.0 U.
Dichloroethane	ug/kg	63,000	700		066	20	100	4.7 U	42U	4.4 U	4.4 U	4.5 U	4.4 U	4.9 U.	4.1 U	4.5 U	4.4 U	42U				L 00 J	40 U
Dichloropropane	µg/kg	84,000	23,000	1,800,000	200	30	150	4.7 U	42U	4.4 U	440	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	42U	2002		2,900 U I.	1.400 U	400
Dichlorobenzene	µg/kg	1	1	1	1	1	1	4.7 U	4.2 U	4.4 U	4.4 U	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	4.2 U		-	-	000 11	4.00
-Dichlorobenzene	ug/kg	1	17,000,000	-	340,000	2.000	11,000	4.7 U	42U	4.4 U	4.40	4.5 U	4.4 U	490	4.10	4.5 U	4.4 U	42U			-	0000	400
anone (MEK)	ug/kg	1	1		1	1	1	4.7 U	42 U	44U	4.4 U	4.5 U	4.4 U	490	4.10	4.5 U	4.4 U	42U	+	+	-	100 D	10 D
exanone	ng/kg	1	ı	1	ı	1	ï	4.70	420	440	440	4.5 U	4.4 U	4.9 U	4.10	4.5 U	4.40	420	+	-	+	0.000	400
Jethyl-2-Pentanone (MIBK)	ug/kg	1	I	-	1	1	1	4.70	42U	4.40	440	4.5 U	4.4 U	490	4.10	4.5 U	4.4 U	42U	+	+	-	1000	400
stone	ug/kg	1	100,000,000		100,000,000	25,000	25,000	19 U	5.3.3	18.0	7.2.3	18.0	18.0	19.0	16 U	180	180	17.0	+	-	12,000 U S	000	D 91
zene	-	100,000	1.600	2,300,000	2,200	30	170	4.70	420	4.40	4.40	4.5 U	4.4 U	4.90	4.10	4.5 U	4.4 U	420	+	+	+	000	400
modichloromethane	-	92,000	3,000,000		3,000,000	009	009	4.70	420	440	440	4.50	4.40	490	410	4.5 U	4.40	4.20	+	+	+	000	4.00
molorm	+	0.000,000	100,000		140,000	800	800	4.70	07.4	044	0 1 1	00%	044	4500	017	4.50	4.40	074	+	+	+	000	400
momethane	US/Kg	2,900,000	15,000		3,900	2000	150,000	4.70	420	440	4.40	4.50	4440	1100	4110	4.50	4440	074	+	+	2,000 0	000	400
Son distultide	-	44 000	640 000		000	32,000	160,000	4711	420	4411	440	450	440	4911	410	450	440	421	290 11	2 700 7	+	170007	400
nzohanzene	no/ka	41 000 000	210.000	L	1 300	1 000	6 500	4711	421	4411	4411	4511	4411	4911	4111	4511	4411	4211	+	+	H	17 005 1	401
roethane	ug/kg	1	1	Т	-	1	1	470	42D	440	440	450	4.40	490	410	4.50	440*	420	t	+	2,900 U	+	400
roform	ue/ke	940,000	540	000	760	009	2.900	4.70	42D	440	440	450	440	490	410	4.5 U	440	420	290 U	+	+	+	DOP
romethane	+	1	1		-	-	1	4.70	42U	440	440	4.5 U	4.4 U	490	410	4.5 U	4.4 U	42U	+	2,700 %	+	1.400 U	40 U
.2-Dichloroethene	-	20,000,000	1,200,000	20,000,000	1,200,000	400	1,100	4.70	420	440	1.1.3	4.5 U	4.4 U	490	410	4.5 U	4.4 U	42U		-	-	200	400
,3-Dichloropropene	па/ка	57,000	2,100		390	4	20	470	420	4.40	277	4.5 U	4.40	4.9 U	4.10	157	4.40	4.20	H	-		200	4.0 U
ohexane	ug/kg	1	1		1	1	1	4.70	4.2 U	4.4 U	440	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	42U			-	D 001	4.0 U
omochloromethane	ug/kg	41.000,000	1,300,000	41,000,000	1,300,000	400	400	4.70	4.2 U	4.40	4,40	4.5U	4.40	490	4.10	4.5 U	4.4 U	42U	290 U	2,700 %		1,400 []	4.0 U
llorodifluoromethane	ug/kg	1	1	1	1	1	1	4.70	42U	440	440	4.5 U	4.4 U	4.9 U	4.10	4.5 U	4.4 U	420		+	2,900 U	D 001	400
Ibenzene	ug/kg	200,000,000	400,000	20,000,000	58,000	13,000	19,000	4.70	420	440	440	4.5 U	4.4 U	490	4.10	4.5 U	4.4 U	420	290 U			1,400 U	400
ropy/benzene (Cumene)	ug/kg	1	1	ı	1	1	1	4.70	420	4.40	440	4.50	4.4.0	4.90	410	4.5 U	4.4 U	420	1	+	+	000	4.0 U
hyl acetaic	ug/kg	1 000 000	1 000 000 0	1 000 000	1 000 000	1 000	1 000	4.70	4.20	440	440	4.50	440	490	410	4.50	440	420	+	2,700 U	+	1,400 U	400
myl-tert-buryt errer	HS/NS	20,000,000	0,000,000	2,000,000	140,000	250	250	4.70	024	4.40	1111	4.50	4.40	0.64	017	4.50	04.40	07%	0.067	+	2,900 C	200	0 0 0
myteyconexane	HEAR	760.000	24.000	000000000	24,000	100	000	4.70	0.24	016	0++	00.00	4.40	4.2 10	0.70 YD	4.30	4.40	0.24	-	+	+	-	100
mytelle emericae	HE/kg	410 000 000	1 500 000	41 000 000	430,000	4 000	18 000	4711	0.00 db	4471	44.4.00	4.0.00	4.0.00	4.0 U	0.70 JD	0.75 JD	1.0.10	0.5/5.0	Ø.	2,700 C	2,000.0	300.11	1.0.1B
meliforoethene		110.000	20,000	2.400.000	28,000	60	300	470	4211	4411	18.1	4 511	4411	4911	4111	4511	4413	4211	-	+	+	+	401
nene		410,000,000	650,000	410,000,000	42,000	12,000	29,000	4.70	420	440	440	450	440	491	4110	4517	4411	4211	290 11	H	+	1.40011	4011
13-1.2-Dichloroethene	ng/kg	41,000,000	3,100,000	41,000,000	3,100,000	700	3,400	4.70	42U	4.4 U	440	4.5 U	4.4 U	4.9 U	410	4.5 U	4.4 U	420	H	+	2,900 U	12 00.	40 U
19-1.3-Dichloropropene	ng/kg	57,000	2,100	1,200,000	390	4	20	4.70	4.20	24.4	277	4.5 U	4.40	167	4.10	757	4.40	4.20	H	H	H	J. 000 L.	100
chloroethene	ug/kg	520,000	8,900	1,200,000	12,000	09	300	4.7.0	1.6.1	2.3 J	130	18	15	4.0.1	1.4.3	1.8.1	7.1	6.5		2,700 U	2,900 U I.	-	0.905 J
chlorofluoromethane	ug/kg	1	1	1	1	1	1	4.7 U	4.2 U	4.4 U	440	4.5 U	4.4 U	4.9 U	4.1 U	4.5 U	4.4 U	42U		2,700 U	2,900 U	1,400 U	400
ryl chloride	-	7,900	1,100	170.000	1,100	10	70	4.70	42U	4.4 U	4.4 U	4.5 U	4,4 U	4.9 U	4.1 U	4.5 U	4.4 U	42U	290 U	2,700 %.	2,900 U L	200	1.8.1
enes. Joint	ug/kg	410,000,000	320.000	41 000 000 17	2 600	150,000	150 000	1771	1211	****													

1 of 4

Table 3
Soil Sample Results
Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

		Expo	Exposure Route-Specific Values for Soils	cific Values for	· Soils	Soil Comp	Soil Component of the															
		Industrial -	Industrial - Commercial	Construct	Construction Worker	Exposure 1	Exposure Route Values															
Compound	Units	Ingestion	Inhalation	Ingestion ug/kg	Inhalation µg/kg	Class I µg/kg	Class II	SB10-14	SB10-20	SB11-12	SB11-13	SB11-13 Duplicate	SB12-2	SB12-10	SB13A-13	SB13A-13 Duplicate	ZBI4	SB14-13	SBISS			3816-15
VOC (SW846 8260)								12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	-	-	12/7/2011	2/6/2011	12/6/2011		12/7/2011 1	12/7/2011	12/7/2011
1,1,1-Trichloroethane	ug/kg	1	1,200,000	1	1,200,000	2,000	009'6	4.6 U	4.5 U	490	4.6 U	4.6U	43U	1.9.1	25	7.1	5,800	2.4.3	4.6U	H	1.5.1	4.4 U
1,1,2,2-Tetrachloroethane	ug/kg	ī	1	1	1	1	1	4.6 U	450	490	4.6 U	4.6 U	4.3 U	440	4.9 U	5.1 U	230 U	4.70	4.6 U	4.5U	4.6 U	4.4 U
1.1.2-Trichloro-1.2.2-trifluoroethane	ng/kg	1	1	,	1	1	1	4.6 U	4.5 U	490	4.6 U	4.6 U	43U	4.40	4.9 U	5.1 U	230 U	470	4.6U	4.5 U	4.6 U	4.4 U
1,1,2-Trichloroethane	ug/kg	8,200,000	1.800,000	8,200,000	1,800,000	20	300	4.6 U	4.5 U	1161	4.6 U	4.6U	430	4.40	4.9 U	5.10	230 17	470	4.60	4.5U	4.5.3	4.4 U
1.1-Dichloroethane	ng/kg	200,000,000	1,700,000	200,000,000	130,000	23,000	110,000	4.6 U	1.0.1	490	4.6 U	4.60	430	4.4 U	4.9 U	5.10	230 U	4.7 U	4.6U	1.2.3	4.6U	440
1,1-Dichloroethene	ug/kg	100,000,000	470,000	10,000,000	3,000	09	300	2.0.3	8.2	4.911	1.1.3	4.6 U	0.88.3	5.1	4.9 U	5.1 U	150 J	4.70	4.6U	9.1	4.610	4.4 U
1.2.4-Trichlorobenzene	ug/kg	20,000,000	0	2,000,000	920,000	5.000	53,000	4.6 U	45U	4.9 U	4.6 U	4.6 U	4.3 U	4.4 U	4.9 U	5.1 U	230 U	4.70	4.6 U	4.5 U	4.60	0.98.J
1.2-Dibromo-3-chloropropane	ug/kg	4,000		89,000	110	cı	20	4.60	4.50	1267	.797	4.60	430	217	.267	5.10	230 U	470	1797	4.51	1.67	1757
1.2-Dibromoethane (EDB)	ng/kg	2,900		62.000	160	0.4	4	4.60	4.50	1267	.79%	4.60	430	440	.767	5.1 U	230 77	4.7 U	1797	4.5 €	1797	4.40
1.2-Dichlorobenzene	ng/kg	180,000,000	560,000	18,000,000	310,000	17,000	43,000	4.6 U	45U	4.9 U	4.6 U	4.6 U	43U	4.4 U	16T	5.1 U	230 U	4.70	4.6U	4.5 U	4.6 U	4.4 U
1.2-Dichloroethane	µg/kg	63,000		1,400,000	066	20	100	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U	4.4 U	2.3.3	5.1 U	68.3	4.7 U	4.6U	4.5U	1.9.3	4.4 U
1.2-Dichloropropane	µg/kg	84,000	23,000	1,800,000	200	30	150	4.6 U	450	490	4.6 U	4.6 U	4.3 U	4.4 U.	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U
1,3-Dichlorohenzene	pg/kg	1		1	1		1	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U	4.4 U	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U
1.4-Dichlorobenzene	ug/kg	1	17,000,000	-	340,000	2,000	11.000	4.6 U	4.5 U	491	4.6 U	4.6 U	4.3 U	4.4 U	4.9 U	S.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	440
2-Butanone (MEK)	µg/kg	t	E.	1	1	1	1	4.6 U	4.51J	_	4.6 U	4.6 U	430	4.40	4.9 U	S.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	44U
2-Hexanone	µg/kg	1	1	1	1	1	1	4.6 U	4.5 U	-	4.6 U	4.6 U	4.3 U	4.40	4.9 U	5.1 U	230 U	4.70	4.6 U	4.5 U	4.6 U	4.4 U
4-Methyl-2-Pentanone (MIBK)	µg/kg	1	1	1	-	1	1	4.6 U	450	-	4.6 U	4.6 U	430	4.4 U	4.9 U	5.1 U	230 U	470	4.6 U	4.5 U	0.94.J	4.40
Acetone	pg/kg	1	100,000,000	1	-	25,000	25,000	161	180	-	181	18.0	17.0	180	20 U	20 U	01016	19.0	181	18.0	4.9.3	180
Веплене	ив/кв	100,000	1,600	2,300,000	2,200	30	170	4.6 U	4.5 U	-	4.6 U	4.6 U	4.3.0	440	4.90	5.10	250 0	4.70	4.6 U	4.5 U	4.6 U	440
Bromodichloromethane	ug/kg	92,000	3,000,000	2,000,000	-	009	009	4.6 U	4.5 U	-	4.6 U	4.6 U	4.3 U	440	490	5.10	230 U	4.70	4.60	4.5 U	4.6 U	440
Bromoform	пв/кв	720,000	100,000	16,000,000	1	800	800	4.6 U	450	490	4.6 U	4.6 U	4/3 U	4.4 U	4.9 U	5.10	230 U	4.70	4.6 U	4.5 U	4.6 U	4.4 U
Bromomethane	pg/kg	2,900,000	15,000	1,000,000	1	200	1,200	4.6 U	450	4.9 U	4.6 U	4.6 U	4.3 U	4.4 U	4.90	SIU	230 U	4.70	4.6 U	4.5 U	4.6 U	4.4 U
Carbon disulfide	pg/kg	200,000,000	720,000	20,000,000		32,000	160,000	4.6 U	450	490	4.6 U	4.6 U	4.3 U	440	4.9 U	5.1 U	230 U	470	4.6 U	4.5 U	4.6 U	4.40
Carbon tetrachloride	ng/kg	44,000	640,000	410,000	006	32,000	160,000	4.6 U	450	4.9 U	4.6 U	4.6 U	4.3 U	4.40	4.9 U	5.10	230 U	4.70	4.6 U	4.5 U	4.6 U	4.40
Chlorobenzene	HS/Kg	41,000,000	210,000	4,100,000	1	1.000	6,500	4.6.0	450	490	4.6 U	4.6.0	4.30	440	4.9 U	01.0	230 U	4.70	4.6 U	4.5 U	4.6 U	440
Chloroethane	ug/kg	1	C	-	-	-	-	4.6 U/UJ*	4.5 U/UJ*	4.9 U/UJ*	4.6 U/UJ*	4.6 U/UJ*	4.3 U/UJ*	4.4 0/03*	4.90	5.10	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.40
Chlorotorm	Hg/kg.	940,000	240	2,000,000	760	000	2,900	4.60	4.5 U	490	4.6 U	4.6 U	4.3 U	440	4.90	2.10	230 U	4.70	4.60	4.5 U	1.2.1	440
Chloromethane	prg/kg	1	1	1	-	1	1	4.6 U	4.5 U	490	4.6 U	4.6 U	4.3 U	4.40	4.90	5.1 U	230 U	4.70	4.6 U	4.5 U	4.6 U	4.4 U
cis-1,2-Dichloroethene	µg/kg	20,000,000	1,200,000	20,000,000	1,200,000	400	1,100	4.6 U	450	4.90	4.6 U	4.6 U	4.3 U	4.4 U	4.90	5.1 U	230 U	470		450	82	4.40
cis-1,3-Luchioropropene	ngwg	27,000	2,100	1,200,000	590	4	07	4.00	4.50	490	204	700	130	000	367	27.0	250 0	4/0	797	4.5 0	4.60	054
Dileggiology	HSANS	41,000,000	1 200 000	41 2000 0000	1 200 0001	400	Ann.	4.00	4.50	4,90	4.00	4.00	4.30	4.40	26.6	2.10	73000	4.70	000	0.64	4.00	440
Dichlorodiffuonomethane	Ho/kg	000000011	0000000		1	100	NOTE:	4611	4511	4011	4611	4611	4.20	4411	4011	5111	230.0	A711	4611	4.50	4611	247
Ethylbenzene	us/kg	200,000,000	400,000	20,000,000	58,000	13,000	19,000	4,60	450	4911	4.6 U	4.6 U	430	440	490	5111	23011	470	460	4511	4611	4411
Isopropylbenzene (Cumene)	µg/kg	1	1	1	1	1	1	4.6U	4.5 U	490	4.6U	4.6 U	4.3 U	4.4 U	4.9 U	5.10	230 U	4.7 U	4.60	4.5 U	4.6 U	440
Methyl acetate	µg/kg	1	1	1	1	1	1	4.6 U	45U	4.9 U	4.6 U	4.6 U	4.3 U	440	490	SIU	230 U	470	4.6 U	4.5 U	4.6 U	440
Methyl-tert-butyl ether	ив/кв	20,000,000	8.800,000	2,000,000	140,000	320	320	4.6 U	45U	161	4.6 U	4.6 U	4.3 U	4.4 U	4.9 U	5.1 U	230 U	4.70	4.6 U	-	4.6 U	4.4 U
Methylcyclohexane	пв/кв	1		1	1	1	1	4.6 U	4.5 U	49U	4.6 U	0.85 J	43 U	440	4.9 U	5.10	230 U	47.0	4.6 U		4.6 U	4.4 U
Methylene chloride	µg/kg	760,000		12,000,000	34,000	20	200	1.7.JB	2.0 JB	2.3 JB	2.2 JB	2.4.JB	3.9 JB	2.2.JB	1.7.JB	1.5.JB	230 U	1.5.JB	1.5 JB		.65 JB	1.7.JB
Styrene	цв/кв	410,000,000	6	41,000,000	430,000	4,000	18,000	4.6 U	450	4.9 U	4.6 U	4.6 U	4.3 U	4.40	4.9 U	5.1 U	230 U	4.70	4.6 U		4.6 U	4.4 U
Tetrachioroethene	ивле	110,000		2,400,000	28,000	09	300	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U	4.4 U	9.9	1.1.3	3,200	470	4.6 U	4.5 U	2.1.3	4,4 U
Toluene	из/кв	410,000,000		410,000,000	42,000	12,000	29,000	4.6 U	4.5 U	4.913	4.6 U	4.6U	43 U	4.4 U	4.9 U	5.10	230 U	4.713	4.6 U	4.5 U	4.6 U	4.4 U
trans-1,2-Dichloroethene	µg/kg	41,000,000	0	41,000,000	3,100,000	700	3,400	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U	440	4.9 U	5.1 U	230 U	4.7 U	4.6U	4.5 U	3.3.3	440
trans-1.3-Dichloropropene	ng/kg	57,000	2.100	1,200,000	390	7	20	4.60	450	767	29%	4.60	430	4.40	267	5.1 U	230 U	4.7.0	4.6 U	450	797	1.40
Trichloroethene	µg/kg	520,000	8,900	1,200,000	12,000	09	300	4.6 U	4.5 U	4911	4.6 U	4.6 U	13.3	1.1.3	3.9.3	0.82 J	520	4.7 U	4.6U	4.5 U	250 E	18
I nenioromemane	ngykg	1 000	Т	1 000	1	1 :	1 0	4.6 U	4.50	490	4.60	4.6 U	430	440	490	5.1 U	230 U	470	4.6 U	4.5 U	4.6 U	440
Vitiyi chlonde	Hg/kg	7,900	220,000	170,000	1,100	150,000	70	4.60	450	490	4.60	4.6 U	430	440	490	5.10	230 U	470	460	4.5 U	4.6 U	4.4 U
Aylendy, Lotal	De No.	410,000,000	7	41,000,000	2,0uv	130,000	130,000	740	140	120	14 U	140	130	130	150	150	0.089	140	140	14 U	140	13.0

Table 3
Soil Sample Results
Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

		Merry	sure Koure-op	Exposure Route-Specific Values for Soils	r Sous	Cumalina	Cucama dancolum Incombion			-			_				_					month
		Industrial -	Industrial - Commercial	Construct	Construction Worker	Exposure R	Exposure Route Values															- 0.
Commonted	Thirt	Ingestion	Inhalation us/ke	Ingestion	Inhalation	Class 1	Class II ug/kg	SB17-4	SB17-19	SB20-20	-		SB22-4 SB2	SB22-7 SB23-4	- SB23-8	-	FS SB2412		2 te SB25-8	SB25-11	SB26-6	SB26-11
109C8 978MS7.JOZ	CHIC	Sec. And	San Alad	Share and	20.00	0.00		12/7/2011	12/7/2011	-	12/21/2011 12/2	12/21/2011 12/20	=	1	-	1	-	011 12/20/2011	-	1 12/21/2011	12/21/2011	12/21/201
1 1-Trialifornations	nother	-	1 200 000	1	1 200 000	2,000	0096	430	4.6 U	290 U	5.1	1.5.3	-	4.4 U 4.8 U	J 42U		U 42U	1 4.6 U	-	4.3 U	4.8 U	43 U
1.2.2—Tetrachloroethone	110/10	1	1	,	1	1	1	430	4.6 U	290 U	-	-	4.70 4.4	4.4U 4.8U		U 4.7 U			4.8 U	430	4.8 U	430
1.2-Trichloro-1.2.2-trifluoroethane	ug/kg	1	1	1	1	1	1	430	4.6 U	290 U	-	4.8 U 4.		44U 4.8U		U 4.7 U				4.3 U	4.8 U	43 U
1.2-Triebloroethane	110/80	8 200 000	1.800,000	8.200.000	1.800.000	20	300	3.4.3	4.6 U	2002			4.7 U 4.2	4.4U 4.8U		U 4.7U	-	1 4.6 U		4.3 U	4.8 U	430
1-Dichlemethane	110/60	200.000.000	1,700,000	200,000,000	130,000	23,000	110,000	4.3 U	4.6 U	290 U				4.4U 4.8U	J 4.2 U				4.8 U	4.3 U	4.8 U	430
1-Dichlowethene	ne/kg	100,000,000	470,000	10,000,000	3,000	09	300	500	16	1,300		-		4.4 U 4.8 U	-	-				4.3 U	4.8 U	43U
2 4-Trichlorohenzene	na/ka	20.000.000	3.200.000	2,000,000	920,000	5,000	53,000	4.3 U	4.6 U	290 U*	-			4.4U 4.8U	J 4.2 U	U 4.7 U)	J 4.6 U		4.3 U	4.8 U	43U
2-Dihromo-3-chloropronane	10//00	4.000	17.000	89,000	110	cı	20	430	195	290 7	H	-			-					4.3 U	187	430
Cartifornication (FDB)	110/20	2.900	120	62,000	160	0,4	4	4.3 U	1.60	2300 77	-	4.8 U 4.		1387 481	1 4.27	77.0	U 42U	1797	287	430	187	430
1 2-Dichlorobenzene	no/ko	180 000 000	560.000	18,000,000	310,000	17,000	43,000	430	4.6 U	290 U	-	-		44U 48U		U 4.7 U	U 42U	1 4.6U		430	4.8 U	43U
2-Dichloroethane	ug/kg	63,000	700	1,400,000	066	20	100	1.7.3	4.6 U	Z90 U				-				-		430	4.8 U	43 U
.2-Dichloropropane	µg/kg	84,000	23,000	1,800,000	900	30	150	4.3 U	4.6U	290 U		4.8 U 4.			J 42U		U 42U	J 4.6 U	4.8 U	4.3 U	4.8 U	430
,3-Dichlorobenzene	ug/kg	1	1	1	1	L	1	430	4.6 U	290 U			4.7 U 4.4	4.4 U 4.8 U		U 4.7 U		-	-	430	4.8 U	430
.4-Dichlorobenzene	из/кв	ı	17.000,000	-	340,000	2,000	11,000	4.3 U	4.6 U	290 U			-			+	+			4.3 U	4.8 U	430
2-Butanone (MEK)	ug/kg		1	1	1	1		3.2.3	4.6 U	290 U	+	+	4.70 4.4	+	+	+	420	+	+	430	4.8 U	450
2-Hexanone	ug/kg	1	1	1	1	1	1	8.6	4.6 U	290 U	-	-	+	-	+	+	+	+	+	4.50	4.8 U	430
4-Methyl-2-Pentanone (MIBK)	µg/kg		1	1	1	1	1 000	0.94.3	4.6 U	290 U	+	+	-	440 480	1 420	0 4.70	+	460	4.8.0	430	4.8.0	430
Acetone	µg/kg	4	100,000,000	1 000	100,000,000	25,000	000,52	767	180	200 0	+	+	+	+	+	+	727	+	+	17.0	190	4311
Веплене	µg/kg	100,000	1,600	2,300,000	2,200	30	0/1	4.50	4.00	2900	+	4.00	+	-	+	+	+	+	+	4.210	4.00	420
Bromodichloromethane	па/ка	1	3,000,000	2,000,000	3,000,000	000	000	4.3 U	4,60	290 0		+	+	4.40	1 420	+	11 420	1400	+	430	4.80	430
Bromotorm	HS/Kg	+	100,000	16,000,000	2,000	300	000	4.30	4.00	0.067	+	4.00	+	1	+	17.7	+	+	+	430	1100	4311
Bromomethane	Hg/Kg	200,000,000	15,000	1,000,000	3,900	22,000	160,000	4.50	4.00	2007	+	ł	+	+	+	+	+	+	+	4311	4.60	4311
Carbon alsumde	HSVAG	+	0000007	410,000,000	000	32,000	160,000	43.11	4611	20062	+	+	-	t	+	+	+	H	-	4311	4811	4311
Chlorobenzene	HO/Eo	4	210,000	4 100 000	1 300	1.000	6.500	430	4.61	290 U	42U	4.8 U 4.	4.7U 4.4	+	1 420	U 4.7U	U 42U	1 460	4.8 U	430	4.8 U	430
Chloroethans	us/kg	+			1	1	1	430	4.6U	290 U	+	H	-	-	H	-	-	-		430	4.8 U	43U
Chloroform	us/kg	940,000	540	2,000,000	760	009	2,900	1.3.3	4.6U	290 U	-	4.8U 4.	-	4.4 U 4.8 U	J 42U	-	-	1 460	4.8 U	4.3 U	4.8 U	4.3 U
Chloromethane	ne/kg		1	1	-	1	1	4.3 U	4.6 U	290 U		-		44U 4.8U	H	U 4.7 U	U 42U			4.3 U	4.8 U	430
cis-1,2-Dichloroethene	ug/kg	20,000,000	1,200,000	20,000,000		400	1,100	3,300 E	39	290 U	4.2 U 2	-			H	-	H		-	4.3 U	4.8 U	430
cis-1,3-Dichloropropene	µg/kg	-	2,100	1,200,000		4	20	4.3 U	1.60	290 U		4.8 U 4.	4.70 4.		-			1397 1	287	430	187	430
Cyclohexane	па/ка	-	I	1	1	Ĭ	1	43U	4.6 U	290 U	H			4.4U 4.8U						4.3 U	4.8 U	430
Dibromochloromethane	µg/kg	41,000,000	1,300,000	41,000,000	1,300,000	400	400	4.3 U	4.6 U	290 U	4.2U 2		-	4.4 U 4.8 U	J 4.2 U	-		J 4.6 U	4.8 U	430	4.8 U	43 U
Dichlorodifluoromethane	ug/kg		1	1	1	1	1	4.3 U	4.6 U	290 U		4.8 U 4.			-	-		-		4.3 U	4.8 U	430
Ethylbenzene	µg/kg	200,000,000	400,000	20,000,000	58,000	13,000	19,000	4.3 U	4.6 U	290 U						-		-		4.3 U	4.8 U	430
sopropylbenzene (Cumene)	µg/kg	1	1	1	1	1	,	43U	4.6 U	290 U	+	+				-	-	J 4.6 U		430	4.8 U	430
Methyl acetate	µg/kg	-	1	1	-	1	1	430	4.6 U	290 U	+	1	-		-	+	-	+	-	430	4.8 U	430
Methyl-tert-butyl ether	µg/kg	20,000,000	8,800,000	2,000,000	140,000	320	320	430	4.613	290 U	420	+	-		+	+		+	+	4.3 U	4.8 U	43 C
Methylcyclohexane	µg/kg				1	1 1		430	4.6 U	290 U	+	+		+	+	+	+	-	+	430	4.8 U	430
Memylene chloride	HS/Kg	+	000000	12,000,000	34,000	7000	007	1.5.15	dt./.2	2002	+	+	+	1	+	+	1	+	+	4.50	4.8.0	4.50
Styrene	µg/kg	4	1,500,000	41,000,000	430,000	4,000	18,000	430	4.6 U	290 U	420	-	-		1 420	+	-	-	-	430	4.80	430
l etrachioroethene	µg/kg	-	20,000	2,400,000	28,000	00	900	4.3 U	4.6 U	2002		4.8 U 4.			7 42	0 4.7 U	U 42U			4.3 U	4.80	430
Toluenc	µg/kg	+	650,000	410,000,000	+	12,000	29,000	430	4.6 U	290 U	+	-		-	4.2	4.7	U 421	460	-	4.3 U	4.8 U	430
trans-1.2-Dichloroethene	HS/Kg	41,000,000	3.100,000	41,000,000	+	100	5,400	350 E	1.1.1	0.067	4.20	4.80	-	-	7 4 7	47	42(100	+	430	4.8 U	4.50
uans-1.3-Urcmoropropene	HS/Kg	+	2,100	1,200,000	+	4 00	000	200	4.00	2007	+	1	470	4.40	-	4.7	4.26	400	+	4.5 0	180	430
Trickloreducenethern	HS/KS	+	0,500	1,200,000	12,000	99	300	4.4	40	200.00	+	+	47.0		1100	4.7	471	460	0 2 0 4	4.30	4.8 U	430
Visual ablanda	HIS NO		1 100	170,000	1 100	1 5	1 2	200	1100	2007	+				74	1.4	775	400	1	000	4.00	000
Vilgare Total	HEAR	1.0	220,000	41 000 000	2,100	150,000	150,000	1211	14.0.0	230 C	1311	4.8.0	1411	1211	700	4.70	470	+	4.x	4.50	4.8 C	4.50

3 of 4

		Expo	Exposure Route-Specific Values for Soils	cific Values 10r	Solls	Groundwat	Proundwater Ingestion							-						
		Industrial - C	Commercial	Construction	Construction Worker	Exposure F	Exposure Route Values													
Programma and, J	2	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	SCR08_28	SR70_C			-	SB33-5 Dunlicate	SB33.0	SB34.20	BC01-5	BC01-8	BG01-8 Dunlicate	BG02-15	BC02-8
VOC (SW846 8260)	OHES	Shirts	Sharke Market	Star Alle	Section .	0.24	St. Ast.	12/29/2011	12/29/2011	12/29/2011	12/29/2011	12/29/2011 1	12/29/2011 1	1	-	12/28/2011	12/28/2011	12/28/2011	12/28/2011	12/28/2011
1 1-Trichloraethane	00/60	ì	1 200 000	1	1.200.000	2,000	0.600	13	0.94.7	870	SIU	540	580	530	540	6.10	5.8 U	009	580	290
1.2.2-Tetrachloroethane	us/kg	1		1	1	1	1	580	640	5.70	510	540	580	530	540	6.1 U	5.8 U	009	580	590
1.1.2-Trichloro-1.2.2-trifluoroethune	ug/kg	Ĭ		ī	1	1	ì	580	640	870	5.10	540	581	530	5.4 U	6.1 U	5.8 U	009	0.85	0.65
1.1.2-Trichloroethane	us/ke	8,200,000	1,800,000	8,200,000	1,800,000	20	300	580	049	570	5.1 U	54U	5813	53U	5.40	610	5.8 U	009	5.8 U	5.9 U
1.1-Dichloroethane	ug/kg	200,000,000	1,700,000	200,000,000	130,000	23,000	110,000	5.8 U	64U	5.7 U	5.1 U	1.5.1	1.6.1	53U	09	610	580	009	5.810	5.9 U
1,1-Dichloroethene	ug/kg	100,000,000	470,000	10,000,000	3,000	09	300	5.8 U	640	5.70	1.9.3	540	5.8 U	530	4.8.3	6.170	5.8 U	0.00	580	290
1,2,4-Trichlorobenzene	ue/ke	20,000,000	3,200,000	2,000,000	920,000	5,000	53,000	5.8 U	640	5.70	5.1 U	5.40	0.83	530	54U	6.1 U	5.8 U	0.009	5.8 U	290
1.2-Dibromo-3-chloropropane	ug/kg	4,000	17,000	89,000	110	·C1	20	1285	.219	5.77	510	5.471	587/	537.	3.47	019	5.8.7	/209	1285	265
1.2-Dibromoethane (EDB)	ug/kg	2,900	120	62,000	160	0.4	77	587	2759	5.77	5.17	1258	5.877	388	3.40	010	.285	1209	282	5.977
I.2-Dichlorobenzene	us/kg	180,000,000	560.000	18,000,000	310,000	17,000	43,000	580	6.4 U	5.70	5.1 U	540	5.8 U	530	5.4 U	610	5.8 U	009	580	29 U
2-Dichloroethane	us/kg	63,000	700	1,400,000	066	20	100	5.8 U	6.4 U	5.70	5.1 U	540	D85	530	540	6.1 U	5.8 U	0.09	5.8 U	2.9 U
1.2-Dichloropropune	usike	84,000	23,000	1,800,000	200	30	150	5.8 U	640	5.70	5.10	540	580	530	5.4 U	6.1 U	5.8 U	000	5.8 U	065
.3-Dichlorobenzene	ug/kg	1		1	1	ı	1	5.8 U	6.4 U	5.70	SIU	5.4 U	5.8 U	5.3 U	5.4 U	6.1 U	5.8 U	0.00	5.8 U	29U
.4-Dichlorobenzene	ug/kg	T	17,000,000	1	340,000	2,000	11,000	580	64U	87.0	5.10	540	5.8 U	530	5.4 U	610	5.8.U	60U	0.88	5917
2-Butanone (MEK)	ug/kg	1	1	1	1	1	1	580	64U	5.70	5.1 U	540	5813	530	5.4 U	6.1 U	5.8.U	600	5.8 U	290
2-Hexanone	ug/kg	1	1	ī	1	L	1	5.8 U	6.4 U	5.7 U	5.10	540	580	53.0	5.4 U	6.10	5.8 U	6.0 U	580	5.9 U
4-Methyl-2-Pentanone (MIBK)	ps/kg	Ü	1	ı	1	-	1	580	6.417	5.70	5.10	540	5.811	\$3 U	5.40	6.177	580	0.0 U	5.813	290
Acetone	прлк	ı	100,000,000	1	100,000,000	25,000	25,000	23 U	25 U	23 U	20 U	22 U	23 U	210	22 U	240	23 U	24 U	23 U	23 U
Benzene	ив/кв	100,000	1,600	2,300,000	3,200	30	170	280	6.4 U	57.0	2.10	540	080	530	5.40	6.10	5.8.0	000	2.8.0	0.60
Sromodichloromethane	ug/kg	92,000	3,000,000	2,000,000	3,000,000	(80%)	009	280	6.40	5.70	2.10	54 U	280	230	5.4 U	6.10	2.8.0	00.9	280	290
Bromoform	ng/kg	720,000	100.000	16,000,000	140,000	800	800	280	640	5.713	210	5.40	280	530	5.40	6.10	5.8 U	0.00	280	2.90
Bromomethane	ug/kg	2,900,000	15,000	1,000,000	3,900	200	1,200	280	640	570	5.10	540	5.8.0	530	540	6.10	580	009	580	5.90
arbon disulfide	ug/kg	200,000,000	720,000	20,000,000	0000'6	32,000	160,000	580	640	570	5.10	540	280	530	540	6.1 U	5.8.0	000	580	290
Carbon letrachionde	SN/SH	44,000	210,000	410,000	1 200	1,000	100,000	2,8,0	0.40	070	0.1.0	240	0.80	230	0.40	0.10	0.80	000	280	2.20
Chloroethine	us/ke	1	1	1	1	1,000,1	1	581	6411	2.6.1	210	5411	2811	5311	540	6111	581	1109	285	2011
Chloroform	ur/ke	949,000	240	2,000,000	750	009	2,900	580	040	570	SIU	540	580	530	540	0.10	580	009	580	29 U
Chloromethane	ug/kg	1		1	1	1	1	5811	640	570	510	540	580	530	54U	610	580	0.00	5.8 U	590
cis-1.2-Dichloroethene	ug/kg	20,000,000	1,200,000	20,000,000	1,200,000	400	1,100	587	640	570	5.1 U	540	5.8 U	530	5.4 U	6.10	580	009	580	5.9 U
cis-1,3-Dichloropropene	ug/kg	57,000	2,100	1,200,000	390	4	20	287	259	3.70	5.70	3.40	587	337.	5.40	219	5.87	203	580	200
Cyclohexane	ug/kg	1	T.	ľ	T.	0	1	5.8 U	64U	57.0	5.170	5.4 U	5.813	5.3 U	540	610	580	009	5.8 U	290
Dibromochloromethane	ug/kg	41,000,000	1,300,000	41,000,000	1,300,000	400	400	5.8 17/171*	6.4 U/UJ*		5.1 U/U/1*	540/00*	5.8 U/UJ*	53 U/UI*	0	6.1 U/UJ*	5.8 U/UJ*	6.0 U/UJ*	5.8 U/U)*	59 U/UJ*
Dichlorodifluoromethune	uc/kg	1	1	1	1	1	1	5811	6.4 U	5.7 U	510	54U	580	53U	5.4 U	6.1 U	5.8.U	0.0 U	5.8 U	5.9 U
Ethylbenzene	ug/kg	200,000,000	400,000	20,000,000	58,000	13,000	19,000	580	6.411	5.70	5.10	540	581	5.3 U	5.40	6.1 U	5.8 U	0.00	5.817	290
sopropylbenzene (Cumene)	пвле	î	1	ì	1	1	1	5.8 U	6.4 U	5.70	5.1 U	5.4 U	280	530	5.4 U	0.1 U	5.8.0	000	5.8 U	5.9 U
Methyl acetate	ug/kg	1	1	1	1	1	1	280	6.40	5.70	5.10	540	280	530	5.4 U	6.10	5.8.0	0.00	580	590
Metavi-tert-buryl emer	ug/kg	20,000,000	8,800,000	2.000,000	140,000	250	270	280	0+0	07.0	010	240	086	530	2.40	6.10	5.80	0.0.9	580	5.90
Internyleyclonexame	HEVES	1	-	1 000 000	1	1 2	1 00	280	010	0//0	01.6	0.40	0.80	530	5.4 U	0.1.0	2.8.0	000	280	2.9 U
Methylene chloride	HE/KG	/ (SO, USA)	1 500,000	12,000,000	34,000	4 800	200	080	040	27.0	21.0	0.40	080	530	540	610	580	0.00	580	290
Street	AE/AE	110,000,000	2007,000	000 000 c	000 00	0000**	2000	000	040	0.70	2.1.5	240	000	220	240	010	2000	000	080	260
College	HE ALE	410,000,000	20,000	410 000 000	00000	000 61	200	1.40	040	07.0	27.0	240	200	220	2,40	010	2.8.0	0.00	000	0.00
Folderic Total James Shares	ug/kg	410,000,000	2 100,000	410,000,000	2 100 000	7000	2.400	2000	040	27.0	21.0	240	280	000	0.40	010	280	0.00	080	0.60
trans. 1 2.Dichloramonan	HS/KS	41,000,000	2.190,000	1 200,000	2007000	AUK	2,410	280	0.40	07.0	210	0.40	280	0.80	2.40	010	086	000	280	290
Land Horosphane	us/les	000,000	0.000	1 200 000	12 000	4	200	200	0.40	3.7.5	27.0	2.40	200	220	3.40	010	2.6 6	200	280	290
Trichlorofluoromethane	me/ko	1	00/00	1.000,000	14,000	00	200	1185	6411	5711	5,111	50.00	5.811	5211	5.411	010	5011	0.0.0	200	0.60
Vinyl chloride	us/ke	7.900	1.100	170 000	1.100	10	20	1188	6411	5711	2112	5.411	5811	5311	2477	6111	2007	000	200	0.50
		410,000,000	200,000	000 000	2 200	000000	00000				- C. W. C.	-	The second secon	2000		1000				

4 of 4

Table 6
Grab Groundwater Sample Results
Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

Compound	Units	IEPA Class I Groundwater Standard	SB15-12 12/7/2011	SB17-24 12/7/2011	SB21-20 12/19/2011	SB21-20 Duplicate 1 12/19/2011	SB22-9 12/9/2011	SB23-11 12/20/2011	SB24-15 12/20/2011	SB26-14 12/28/2011	SB-35-20 2/14/2012	SB39-12 2/14/2012	SB40-12 2/14/2012	SB40-12 Duplicate 2/14/2012	SB41-15 2/15/2012	SB42-15 2/15/2012	SB43-24 2/15/2012	SB44-24 2/15/2012
VOCs (SW846 8260B)																		
1.1-Trichloroethane	Lgu	200	31	2.8.3	190	170	5.0 U	5.0 U	5.0 U	5.0 U	850	5.0 U	5.0 U	S.0 U	S.0 U	5.0 U	5.0 U	11
1.2.3-Tetrachloroethane	l/8rl	1	10 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	200	S0 U	5.0 U/UJ*	5.0 U	5.0 U	5.0 U	5.00	5.0 U	5.0 U
,1.2-Trichloro-1,2.2-trifluoroethane	l/git	1	11	500	5.00	5.010	50U	500	500	5.0 U	20.0	5.0 U	200	200	5.0 U	5.0.0	200	200
.1.2-Trichloroethune	1/24	5	201	50 U	5.0 U	5.0 U	5.0 U	200	200	5.0 U	20 02	5.0 U	5.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
.1-Dichloroethune	1/811	700	360	23.3	75	89	5.0 U	50U	50	5.0 U	67	5.0 U	200	5.0 U	200	1.5.3	5.0 U	4.4.3
.1-Dichloroethene	Dan	7	99	2.4.3	110	110	5:0 U	500	1.3.3	5.0 U	969	5.0 U	5.00	5.00	5.0 U	5.0 U	5.0 U	15
.2,4-Trichlorobenzene	1/SH	70	10 U	00'S	0.50 J	2.0.3	5.0 U	105	5.0 U	5.0 U	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2011	201
L2-Dibromo-3-chloropropane	Les I	0.2	.201	5.0 5	5.07	5.0 U	5.07	205	5.0 U	205	202	205	5077	5.0 U	5.0 U	5.07	200	205
2-Dibmoethane (EDB)	l/an	0.05	201	5.0 %	205	5.0 U	200	202	5.0 U	205	50 %	5.00	202	5.00	5.0 U	5.00	200	208
2-Dichlorobenzene	l/su	009	10.01	200	5.010	5.0 U	5.00	S0U	5.017	5.0 U	50 U	5.0 U	500	5.0 U	5.0 U	5.0 (1)	500	5.0 U
2-Dichloroethane	l/an	20	2.2.3	50U	1.6.3	1.7.3	500	500	500	5.0 U	13.3	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Dichloropropune	1/8/1	15	201	5.0 U	5.013	5.0 U	S.0 U	500	5.013	5.0 U	2002	5.0 U	500	500	5.0 U	5.0 U	5.0 U	5.0 U
3-Dichlorobenzene	Pan	1	1001	500	5.0 U	5.0 U	5.00	5.00	5.0 U	5.0 U	N 05	5.0 U	500	5.0 U	5.0 U	5.0 U	500	5.0 U
4-Dichlerobenzene	l/an	75	100	50 U	5.0 U	5.0 U	5.00	5.0 U	5.0 U	5.0 U	20 U	500	5.0 U	500	5.0 U	5.0 U	S.0 U	5.0 U
2-Rutanone (MEK)	1/577	1	1001	SOU	5.0 U	S.0 U	5.00	5.0 U	500	5.0 U	50 U	500	5.0 U	5.0 U	5.0 U	5.013	5.0 U	50U
2-Hexanone	Hg/I	1	TOI	50U	500	5.0 U	500	5.0 U	5.0 U	500	50 U	5.0 U	200	5.0 U	5.0 U	5.0 U	500	500
4-Methyl-2-Pentanone (MIBK)	l/git	L	101	00S	5.0 U	0.0 U	0.0 U	5.0 U	5.0 U	500	50 U	200	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U	50U
Acetone	ng/1	6,300	40 U	20 U	2017	20 U	20 U	20 U	20 U	20 U	200 U	20 U	20 U	20 U	20 U	20 U	20 U	20 11
Benzene	ng/l	20	7007	50U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 5	5.0 U	200	5.0 U	5.0 U	5.0 U	5.0 U	200
Bromodiehloromethane	l/gn	0.2	7007	\$0 U	5.0 U	200	200	200	5.0 U	202	200	5.00	20.5	200	5.0 %	5.00	5.00	200
Bromoform	Lgu	1	.201	200	5.0 17	5.0 27	205	300	200	200	2000	200	200	2000	200	3.0.5	2000	2000
Bromomethane	HS/I		10 U	200	200	5.0 U	00.0	0.00	200	5.00	20,0/032	5.0.0	5.0 0/03-	5.0 0/00-	5.0 0/03-	20000	20000	20000
Carbon disulfide	hgu .	700	100	200	5.0 U	5.00	200	200	200	000	200	5.00	200	2000	5.0.0	5000	000	2000
Carbon tetrachlonde	light.	00:	707	200	2000	5000	2000	2000	5011	50.0	50.11	500	200	1105	501	50.0	5011	5011
Chlorouthan	1001	700	89	5013	3.6.1	35.1	500	500	200	5.0 U	200	SOUNT	500	500	5.0 U	5.0 U	5.0 U	500
Chlorotorm	l/an	0.2	.207	300	5.01.	205	202	300	5.00	500	20 02	200	5.0 U	5.07	5.0 7.	5.07	202	5.0 5
Chloromethune	l/su	1	1001	0.0°S	\$00C	5.0 U	500	5.00	5.0 U	D 0.5	50 U	5.0 U	5.013	200	5.0 U	5.0 U	5.0 U	5.017
cis-1,2-Dichloroethene	Light	70	100	150	26	77	200	5.0 U	19	5.0 U	14.3	5.0 U	5.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
cis-1.3-Dichloropropene	l/gn		201	300	3.00	205	5.00	500	500	202	50 0	205	202	5.0 U	5.0 U	5.0 0	200	500
Ovclohexane	ngd	1	10 U	500	\$.00	5.0 U	50U	SOU	5.0 U	5.0 U	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	500
Dibromochloromethane	l/gii	140	10.01	5.0 U	5.01	5.0 U	50U	500	200	5.0 U	50 U	5.0 U.	500	5.0 U	5.0 U	5.0 U	500	500
Dielilorodifluoromethane	hgd.	1	13	5.0 U	200	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	200	5.0 U	5.0 U	200	5.0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	l/gri	700	10 01	200	500	5.0 U	200	S.0.U	S.0 U	5.0 U	200	S.0 U.	5.0 U	200	5.0 U	5.0 U	200	5.0 U
sopropylbenzene (Cumene)	l/grl	1	10 U	500	500	5.0 U	200	500	500	S.0 U	200	200	500	200	5.0 U	200	5.0 0	200
Methyl acetate	light.	1 6	101	200	200	2000	2000	5000	2000	2000	20.00	2005	200	200	5000	5011	50.00	200
Mathyland observes	1000	2 1	1101	2013	1108	501	2005	2005	5017	5011	5011	501	5011	2005	5017	501	5011	5011
Methylene chloride	lan	5	3,9.3	5.0 U	50U	5.0 U	5.0 U	5.00	5.013	5.0 U	30 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	1/8/1	100	100	500	5.0 U	5.0 U	501	5.0 U	200	5.0 U	50 U	5.0 U.	500	5.0 U	5.0 U	0.0°S	5.0 U	0.0°S
etrachloroethene	l/gri	S	.201	500	5.0	4.9.3	5.0 U	5.0 U	500	5.0 U	205	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Loluene	L/Srt	1,000	10 U	L9.I	5.0 U	5.0 U	5.0 U	5.0 U	2.2.3	5.0 U	20 U	5.0 U	5.00	5.0 U	5.0 U	5.0 U	5.0 U	500
trans-1,2-Dichloroethene	l/gri	100	10 U	4.1.3	500	5.0 U	500	5.0 U	500	5.0 U	S0 U	50U	500	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,3-Dichloropropene	l/gn	I	.701	200	200	5.0 U	200	202	202	205	20 0.5	5.0 U/UJ*	205	5.0 U	20%	200	202	200
Frichloroethene	ligh.	S	1.8.1	130	36	R	5.0 U	5.0 U	9.4	5.0 U	170	0.0.2	5.00	5.00	5.0 U	5.0 U	5.0 U	60.5
Гисьгогопототетьние	ng/l	1	100	200	200	5.0 U	50U	200	5.0 U	200	200	S.0 U	200	5.00	5.0 U	2.0 U	200	5.0 U
Mary planting						100000000000000000000000000000000000000		44.0.0	8 4 8 8		10.00							

Page 1 of 2

Table 6
Grab Groundwater Sample Results
Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

Component Comp			IEPA Class I Groundwater		SB46-18	SB47-11	SB48-15.5	SB49-24	SB50-17	SB51-16	SBS1-16 Duplicate	MAV10 (5-9)	NFW10 (9-14)	MW10 (69-74)	MW10 (89-94)	(99-104)
Control SOUT	Compound	Units	Standard		8/2/2012	8/2/2012	8/2/2012	8/3/2012	8/3/2012	8/3/2012	8/3/2012	10/30/2012	11/1/2012	10/31/2012	10/31/2012	10/31/2012
Active controllers pp. 1 50.0 </td <td>VOC: (SW846 8260B)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10000</td> <td></td> <td></td> <td></td> <td></td> <td></td>	VOC: (SW846 8260B)										10000					
Control Cont	1.1.1-Triebloroethane	l'an	200	50U	5.00	200	5.0 U	5.0 U	5.0 U	5.00	5.00	11	2000	200	200	200
Color	1,1,2,2-Tetrachloroethane	1/8ri	T	500	200	200	500	501)	500	5.00	200	200	2000	200	200	200
Comparison Com	1.1.2-Trichloro-1,2.2-trifluoroethane	ngd	1	201	5011	5.0 U	200	500	000	200	500	200	2000	2.0.0	5000	000
the think the th	1.1,2-Trichloroethane	hgd	90	5.0 U	5.0 U	5.0 U	5.0 U	200	200	200	200	0.0.0	2000	3.0.0	2000	000
Part	1,1-Dichloroethane	hg/l	700	200	5.0 U	5.00	5.0 U	500	6.8	2.0 U	200	77	0.000	200	000	200
Marchen March Ma	1.1-Dichloroethene	l/git	7	500	5017	5.00	5.00	200	S.0 U	5.0 U	20 C	5.0 U	2005	200	000	00%
High Co So So So So So So So	1.2,4-Trichlorobenzene	ngri	70	7.8 B*	5.0 U/UJ*	1.1 JB*	\$0000s	\$.0 U/UJ*	\$00/00s	0.55.JB*	0.45 JB*	500	2005	5.0 U	200	200
Mail Good Solid	1.2-Dibromo-3-chloropropane	ug/1	0.2	.205	202	202	208	202	201	5.0 7.	205	305	2005	205	1205	205
betacone gg1 690 501 5	1.2-Dibromoethane (EDB)	1/311	0.05	205	200	200	205	305	205	20%	205	205	17 005	205	200	200
Applied Appl	1.2-Dichlorobenzene	1/8/1	009	5.0 U	500	500	200	5011	5.0 U	5.0 U	5.017	500	500 11	200	5.013	200
Particular Par	1.2-Dichlorocthane	l/Sri	95	200	5.0 U	5.0 U	500	5011	S0U	2011	5.0 U	200	2005	200	200	500
Particular Par	1.2-Dichloropropunc	ng/l	S	500	5013	501	500	500	5.0 U	5.013	5.013	5.0 U	2005	5.0 U	200	50U
MERCY pigg1 π75 50.01	1.3-Dichlorobenzene	1611	1	500	5011	200	5.01	200	5.0 U	5.017	5.0 U	200	500 U	200	5011	200
ARRYIN pigel — 50.01 5	1.4-Dichlorobenzene	1/2H	75	5.0 U	200	200	200	SOU	S.0 U	200	500	20 U	2005	20 C	5.0 U	200
Part	2-Butanone (MEK)	Lan	1	5.00	200	D0.8	SOU	5017	5.0 U	5.0 U	5.00	5.0 U	500 U	5.0 U	5.0 U	5.0 U
Vertication (MIRK) Ref. (6.800) 5.010 5	2-Hexanone	1/211	1	200	5.0 U/UJ*	5.0 U	50U	200	5.0 U	5.017	500	5011	200 U	5.0 U	5.0 U	500
	4-Methyl-2-Pentanone (MIBK)	1/2/2	1	5.0 U	200	5.0 U	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U	5.0 U	200 U	5.0 U	5.0 U	5.0 U
	Acetone	I/Sn	6,300	20 U	20 13/131*	20 U	200	20 U	20 U	2017	20.03	20 U	2000 U*/UJ	2010	20 U	20 U
	Benzene	1/8/1	8	SOU	5.0 U	5.0 U	50U	5.017	50U	5.017	5.00	5.0 U	200 U	5.0 U	5.0 U	5.0 U
Mail 1	Bromodichloromethane	1/8/1	0.2	201.	200	2005	202	500	205	200	202	200	2005	205	202	200
Mail	Bromoform	l/8ti		205	1208	1205	205	5.0 7.	.205	205	2011	205	2005	507	205	205
The color of the	Bromomethane	l/gn	-	5.0 U	5.0 U	5.0 U	500	500	200 U	5.00	501	200				
	Carbon disulfide	l/gn	700	500	5.017	5.0 U	500	5011	500	5.0 U	5.0 U	1105	500 U	500	500	500
Part 100 501	Carbon tetrachloride	ug/l	o,	5.017	2011	501	50U	5.013	5.0 U	5.0 U	500	5017	2005	SOU	5.017	200
	Chlorobenzene	l/gri	100	501	500	500	5.0 U	5011	5.0 U	5.0 U	5.0 U	0.91 J	440.3	5.0 U	5.017	500
Mail	Chloroethane	Dan	1	5.010	5.0 U	200	500	5011	500	\$00	5.0 U	200	200 U	5.0 U	200	200
	Chloroform	ng/l	0.0	5.0 €	1705	205	205	507	.205	205	205	205	2005	205	201	205
Heart 10 10 10 10 10 10 10 1	Chloremethane	ng/l	1	10.8	5.0 U	200	SOU	SOU	200	5.0 U	5.0 U	200	200 C	5.0 U	200	200
Mari	cis-1.2-Dichloroethene	Lgu	70	38	5.0 U	500	501	5011	3.73	5.0 U	500	62	22000	2.0 U	2.0 U	5.0 U
	ers-1,3-Dichloropropene	Lgg [-	.205	201	205	.705	200	.705	200	205	205	2005	205	205	200
	Cyclohexane	hgu.		5.017	5.017	500	5.0 U	200	SOU	5.0 U	SOU	500	500 U	5.0 U	5.0 U	200
	Dibromochloromethane	l/an	140	5.0 U	5.0 U	5.0 U	5011	5011	200	200	200	201	200 0	501	5.01	200
Heart	Dichlorodifluoromethane	1/84	1	5.0 U	5,017	5.0 U	200	5.0 U	200	\$.0 U	5.0 U	5.0 U	200 U	5.0 U	200	8.0 U
	Ethylbenzene	ng/l	700	5.017	5.0 U	200	SOU	5.010	200	5.0 U	5.0 U	200	200 U	202	200	200
	Isopropylbenzene (Cumene)	118/1	1	200	5.0 U	200	200	200	200	200	000	000	2000	0.00	200	200
	Methyl acetate	ng/	1 6	200	0.00	0.000	5000	5000	000	2000	200	5.010	2000	2000	5000	5011
	Methyl-tert-buryl emer	1881	70	202	5017	200	2000	5011	2002	5017	500	5011	5007	5.011	200	201
He 100 5011 501 5011 5011 5011 5011 5011 5011 5011 5011 5011 5010	Methylevelonesing	178W	1	5013	5011	1105	5011	5011	1108	5011	2011	5011	11 005	501	5013	501
10 10 10 10 10 10 10 10	Street	ited	100	5013	2011	5.013	5011	501	200	5.0 U	S.0 U	500	.2005	5.0 U	5.0 U	5.0 U
Heart 1,000 50 U	Tetrachloraethene	1/211	5	500	500	5.00	5017	1108	50U	5.0 U	5.0 U	5.0 U	2000	5.0 U	0.0.S	5.0 U
	lo lucine	l/an	1,000	5.00	S.0 U	5.00	500	500	5.0 U	5.00	5.00	5.0 U	200 U	5.0 U	5.0 U	5.0 U
Hart 500 500	trans-1.2-Diehloroethene	l/gn	100	0.98 J	5.00	5.013	501	1105	1.0.1	N0.5	5.0 U	5.0 U	180 J	5.0 U	5.0 U	5.0 U
He S S S S S S S S S	trans-1,3-Dichloropropene	I/Sit		305	12.0.5	302	205	500	205	5.0 U	205	5.0 %	2005	205	5.0 U	500
HIGH 2 30T 50T 50T 50T 50T 50T 50T 50T 50T 50T 5	Trichloroethene	hg/l	80	5.011	5.017	5.0 U	1105	202	41.3	5.0 U	5.017	13	2200	5.0 U	5.0 U	500
12 307 307 307 307 307 307 307 307 307 308 308 308 308 308 308 308 308 308 308	Trichlorofluoromethane	l/gri	Ĭ.	\$0.0/0.1*	5.00	\$ 0 U/UI*	\$ 0 U/UI*	\$.0 U/UI*	5.0 U/UJ*	500/00*	500001*	500	200 U	5.013	5.0 U	5.0 U
	Vinyl chloride	l/Sri	64	507.	202	205	307	500	205	205	202	7.9	1200	5.0 U	5.00	5.0 U

Table 7 Soil Gas Sample Results GE Morrison Facility Morrison, IL

		Residential Air	Industrial Air								SG4-5			
Compound	Units	(ng/m³)	(ng/m³)	SC1-5	SG1-12	SG2-5	SG2-13	SG3-5	SG3-13	SG4-5	Duplicate	SG4-13	SG5-5	SG5-10
VOC (TOIS)				12/21/2011	12/21/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011
1,1,1-Trichloroethane	em/gu	5,200	22,000	410,000	71,000	63	6.7	550	5.3	1.1	1.6	44	25,000	52,000
1,1,2,2-Tetrachloroethane	ng/m³	0.042	0.21	12 0000+	U 089	1140	DFI	19 []	2.40	17 11	1.4 U	019	510 17	I.100 U
1,1,2-Trichloroethane	em/gn	0.15	0.77	3200 U	540 U	UIU	LIU	15 U	119 17	UII	1.10	1.8 U	110 01+	N 098
1,1-Dichloroethane	ng/m²	1.5	7.7	2300 U	1,100	2.8	0.81 U	42	9.8	0.81 U	0.81 U	510	300 U	17 059
1,1-Dichloroethene	ug/m³	210	880	8,900	5,500	1.1	U 62.0	11.0	1.7	U 62.0	U 62.0	200	32,000	54,000
1,2-Dichloroethane	"m/gn	0.094	0.47	2300 U	J 004	0.81 U	0.81 U	UI	1.4 (1	0.81 U	0.81 U	3.6 U	300 [7]	040 N
Carbon tetrachloride	ng/m²	0.41	2	3600 11	030 17	1.3 U	1.3 U	18 U	2.2 U	1.3 U	1.3 U	5.6 U	720 []	Ω 066
Chloroform	m/gn	0.11	0.53	2800 [7	490 U	7.7	0.98 [7	23	1.7 U	0.98 U	0.98 U	4.3 ()	360 U	17.077
cis-1,2-Dichloroethene	_c m/sin	-	1	2300 U	390 U	0.79 U	0.79 U	120	22	0.79 U	0.79 U	3.5 U	300 U	620 U
Methylene chloride	ug/m³	5.2	26	12 0005	12 098	1.7 U	1.7 U	24 U	3.0 U	1.7 U	1.7 U	7.7 U	650 U	1,400 U
Tetrachloroethene	ug/m³	0.41	2.1	7,100	12 089	1.40	1.40	19 01	2.6	1.4 U	1.4 U	0.00	510 U	1,100 U
trans-1,2-Dichloroethene	, m/gn	63	260	2300 U	390 U	U 62.0	O 279 U	30	1.4 U	0.79 U	O 62.0	3.5 U	300 U	620 U
Trichloroethene	"m/sin	0.43	3.0	6,400	2,500	70	1.1 U	2,000	11	J.I.U	LIU	1.8 U	940	3,000
Vinvi chloride	ug/m ³	0.16	2.8	1500 U	250 U	0.51 U	0.51 U	7.2 U	0.89 U	0.51 U	0.51 U	230	13001	100 n

Notes: Bold - Indicates a detection of the noted compound.

Highlighted result is above one or more screening criteria.

Italicized - Indicates that the reporting limit is above one or more screening criteria.

ug/m³ - Micrograms per cubic meter

U - Compound is not detected.

		Residential	Industrial Air	4						SG8-10					SG12-5		
Compound	Units	(ug/m ³)	(ug/m ³)	SG6-5	SG6-10	SG7-5	SG7-10	SG8-5	SGS-10	Duplicate	SG9-5	SG10-5	SG11-5	SG12-5	Duplicate	SG13-5	Trip Blank
VOC (T015)				12/22/2011	12/22/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/28/2011	12/28/2011	12/28/2011	12/28/2011	12/28/2011
1 1 1-Trichloroethane	us/m³	5,200	22,000	14,000	19,000	310	4,400	3.1	130	160	1.2	1.1 U	1.5	1.1 U	1.1 U	1.10	110
1 1 2 2-Tetrachloroethane	ug/m³	0.042	0.21	J 025	500 U	UII	240 U	UTI	500	2.7 U	$I \neq U$	D + I	17 + 17	1.40	1.4 U	D+D	140
1,1.2-Trichloroethane	ug/m³	0.15	0.77	370 U	12 001	8.7 U	U 061	1.1 U	4.0 U	2.2 U	LIU	1.1 U	1.1 U	UII	1.10	1.1 U	UII
1 1-Dichloroethane	ug/m³	1.5	7.7	280 U	290 U	6.5 U	880	0.81 U	170	200	38	0.81 U	0 81 U				
1.1-Dichloroethene	ug/m³	210	880	27,000	43,000	069	26,000	O 62.0	240	260	14	0.79 U	U 67 0				
1 2-Dichloroethane	ug/m³	0.094	0.47	280 U	290 U	6.5 U	140 U	0.81 U	2.9 U	1.6 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 [7]	0.817
Carbon tetrachloride	ug/m³	0.41	2	430 []	12 097	10 OT	220 U	1.3 U	4.6 U	2.5 (/	1.3 U	130					
Chloroform	im/an	0.11	0.53	330 [7]	350 77	7.8 U	J70 U	U 86.0	6.2	6.1	2.2	0.98 U	0.98 (7				
orion 7 Dichlorathone	110/m3	1	1	270 U	290 U	60,1	140 U	U 67.0	150	160	32	U 62.0	U 62.0	U 62:0	U 62.0	0.79 U	0.79 U
Methylene chloride	us/m³	5.2	26	12 065	630 [7]	14 U	310 [7	1.7 U	6.3 U	3.5 U	3.5	1.7 U					
Terrachloroethene	ug/m³	0.41	2.1	12 095	13 065	NU	240 17	17.7.1	1167	2.7 U	1.40	1.4 U	I + U	1.40	1.40	1.40	140
trans-1 2-Dichloroethene	ug/m³	63	260	270 U	290 [7]	6.3 U	170 DT	U 62.0	19	20	2.5	0.79 U					
Trichloroethene	ng/m³	0.43	3.0	470	740	120	190	1.1 U	100	80	72	1.1 U	1.1	1.2	1.2	LIU	110
Vinyl chloride	ng/m³	0.16	2.8	170 171	13 061	4.1.0	Ω 06	0.51 U	1.9 U	1.0 U	48	0.51 U					

Bold - Indicates a detection of the noted compound.

Highlighted result is above one or more streening criteria.

Italicized - Indicates that the reporting limit is above one or more screening criteria.

ug/m² - Micrograms per cubic meter

U - Compound is not detected. VOC - Volatile organic compounds

Page 1 of 1

Groundwater Elevation Data - January 2012 GE Morrison Facility Morrison, Illinois

	Screened Interval	Measured Top of Casing	Depth to Water Below Top of	;
Monitoring Well	(feet bgs)	Elevation	Casing (feet)	Groundwater Elevation
MW1-LD	259-269	639.91	15.58	624.33
MW2-UD	52-62	642.82	17.00	625.82
MW3-UD	92-102	624.34	0.50	623.84
MW4-LS	83.5-93.5	626.61	3.46	623.15
MW4-UD	86-91	635.17	10.01	625.16
MW5-LS	73-83	623.35	0.00*	623.35*
MW7-LS	90-100	625.73	2.61	623.12
MW8-LS	96-98	625.34	2.27	623.07
G101D	223-239	626.10	3.16	622.94
G104S	7.2-17.7	626.90	7.82	619.08
G104D	33-49	626.90	6.81	620.09
G105S	8-24	636.91	12.40	624.51
G105D	32.2-48.1	644.39	19.74	624.65

Notes:

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on January 12, 2012.

*Well is artesian, water flows out of well when cap is removed.

Page 1 of 1

Groundwater Elevation Data - August 2012 GE Morrison Facility

Table 8B

Morrison facility Morrison, Illinois

	Comotal Latonical	Monday Town of Contact	Doneth to Woton Dolone Ton of	
Monitoring Well	(feet bgs)	Measured rop of Casing Elevation	Depth to water below top of	Groundwater Elevation
MW1-LD	259-269	639.91	18.47	621.44
MW2-UD	52-62	642.82	18.69	624.13
MW3-UD	92-102	624.34	NN	NM
MW4-LS	83.5-93.5	626.61	5.40	621.21
MW4-UD	86-91	635.17	12.23	622.94
MW5-LS	73-83	623.35	1.71	621.64
MW7-LS	90-100	625.73	4.64	621.09
MW8-LS	96-98	625.34	4.33	621.01
WM9	10-20	626.02	10.05	615.97
G101D	223-239	626.10	5.00	621.10
G104S	7.2-17.7	626.90	9.25	617.65
G104D	33-49	626.90	8.32	618.58
G105S	8-24	636.91	15.31	621.60
G105D	32.2-48.1	644.39	22.56	621.83

Jotes:

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on August 8, 2012.

NM - Water level could not be collected because the well casing is damaged.

Table 9A
Groundwater Sample Results - January 2012
GE Morrison Facility
Morrison, Illinois

		IEPA Class I Groundwater		GW-DUP02-2012 (Duplicate of GW-				GW-DUP01-2012 (Duplicate of GW-		
Work consess except	(inits	Standard	GW-MW1-LD-2012	MAVI-LD-2012)	GW-MW2-UD-2012	GW-MW3-UD-2012	GW-MW4-LS-2012	MW4-LS-2012)	GW-MW4-UD-2012	GW-MWS-LS-2012
V UCS (S11040 0700D)			1/29/2012	1/20/2012	1/20/2012	1/26/2012	1/20/2012	1/20/2012	1/26/2012	1/26/2012
I,I,I-Trichloroethane	ng/l	200	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	S.0 U	5.0 U
1,1,2,2-Tetrachloroethane	l/gu	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	l/gri		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	l/gn	100	5.0 U	5.0 U	500	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	l/gri	700	1.7.3	1.8.1	5.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
I,1-Dichloroethene	l/Sri	7	2.7.3	2.9.3	5.00	1.1.3	3.3.3	3.5.3	5.0 U	5.0 U
1.2.4-Trichlorobenzene	l/git	70	\$.0 U/UJ*	5.0 U	5.0 U/UJ*	5.0 U/UJ*	5.0 U	5.0 U	5.0 U/UJ*	5.0 U
1.2-Dibromo-3-chloropropane	l/gu	0.2	5.0 77	20%	5.077	20.5	5.0 U	5.0 U	5.0 U	5.077
1,2-Dibromoethane (EDB)	l/gn	0.05	5.0 U	5.0 U	5.0 U	5.0 U	200	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	l/gn	009	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	hgu	10	5.0 U	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	l/gri	8	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	l/gu	1	5.0 U	5.0 U	\$ 0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.00
1,4-Dichlorobenzene	Lgu.	75	5.0 U	5.013	S.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Butanone (MEK)	Lau.	1	5.0 U	5.0 U	5.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	l/gn	1	5.0 U	5.0 U	5.00	5.0 U	5.0 U	5.0 U	S.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	l/gn	1	5.0 U	5.0 U	5.07	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	Lgu	6,300	20 U	20 U	20 U	20 U	20 U	20 17	6.9 J	20 U
Benzene	L/gH	5	5.0 U	5.0 U	5.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	l/gH	0.2	500	5.0 U	5.0 U	5.0.U	2.0 %	5.0 U	5.0 7.	5.0 U
Bromoform	hgu	-	5.0 U	5.0 7	5.0 U	5.0.7	5.0 U	5.0 U	5.0 U	5.0 7.
Bromomethane	l/gH		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon disulfide	l/gri	700	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	hgd	8	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	S.0 U
Chlorobenzene	hg4	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	l/gn	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	hg/l	0.2	205	5.0 U	5.0 U	202	5.0 U	5.0 7.	5.0 7.	20%
Chloromethane	hgu	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	S.0 U
cis-1,2-Dichloroethene	hg/l	20	50U	5.0 U	5.0 U	5.0.U	1.4.3	1.3.3	0.95 J	5.0 U
cis-1,3-Dichloropropene	hgd	_	5.0 U	5.0 U	5.0 77	5.0 7	5.0 U	5.0 U	5.0 U	5.0 7.
Cyclohexane	hgd	1	5.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*	\$10 U/U3*	\$.0 U/UJ*	\$.0 U/UJ*	5.0 U/UJ*
Dibromochloromethane	ng/l	140	5,0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	µg/l	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	hgu	700	5.0 U	5.0 U	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	l/gu		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methy I acetate	l/git	1	500	5.0 U	5.0 U	5.0 U	5.0 U	S:0 U	5.0 U	5.0 U
Methy I-tert-butyl other	l/gri	70	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	hgh	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	µg/l	150	\$.00	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	µg/l	100	5.0 U	5.0 U	50U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	l/gn	5	5.0 U	5.0 U	2.3	6.6	7.1	7.6	5.0 U	5.0 U
Toluene	ng/l	1,000	5.0 U	5.0 U	2.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1.2-Dichloroethene	hgu	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,3-Dichloropropene	l/gri	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	l/Sn	S	4,4.3	5.6	5.0 U	3.7.3	140	140	5.0 U	5.0 U
Trchlorofluoromethane	hgh	1	\$.0 U/UJ*	\$.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*	\$.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*
Vinyl chloride	ngri	20000	5.0 0	5.0 U	5.0 U	2.0 %	5.0 C	S.0 U	5.0 U	5.0 U
Aylenes, Lotai	ugu	10,000	15 U	15 U	15 U	15 U	15 U	15 U	15 U	18 U

Document 10 – Part 4

Expert Report of Konrad J. Banaszak, Genesis Engineering & Development, dated 11/13/2014

Table 9A Groundwater Sample Results - January 2012 GE Morrison Facility Morrison, Illinois

120	3	Groundwater		CONTRACTOR OF STREET	Court Create Court	CHOC GLOSS THE	CIOC CLOSE SOLD	C10, 010EC 2012	C10c G2012 VIT
Compound	Units	Standard	GW-MW7-LS-2012	GW-MW8-LS-2012	1/26/2012	1/26/2012	1/26/2012	1/26/2012	1/26/2012
VOUS (SVV 846 8260B)	l/oii	200	56	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1.7.2_Tetrachloroethane	L'on	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5,0 U
1.1.2-Trichloro-1.2.2-trifluoroethane	u2/1	-	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1.2-Trichloroethane	ng/l	5	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1-Dichloroethane	ug/l	700	8,4.3	71.3	5.0 U	5.0 U	5.0 U	1.5.J	15
1 -Dichloroethene	1/8/1	7	83	150	5.0 U	5.0 U	5.0 U	S.0 U	6
1.2 4-Trichlorobenzene	us/1	70	25 U	130 U	5.0 U	5.0 U/UJ*	5.0 U	5.0 U	5.0 U/UJ*
1.2-Dibromo-3-chloropropane	ug/l	0.2	25 U	130 [7]	2.0.2	20.5	5.0 U	202	5.0 U
1.2-Dibromoethane (EDB)	l/gu	0.05	25 U	130 %	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.2-Dichlorobenzene	1/211	009	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.2-Dichloroethane	1/8/1	5	25 U	130 77	5.0 U	S.0 U	5.0 U	5.0 U	2.0.3
1.2-Dichloropropane	1/211	5	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	l/Sri	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.4-Dichlorobenzene	Lan	7.5	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Butanone (MEK)	1/211	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	Lau.	1	25 U	130 U	5.0 U	\$.0 U/UJ*	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	l/sn	-	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	ug/1	6,300	10001	N 000 C	20 U	20 U/UJ*	20 U	20 U	5.9.3
Benzene	l/gn	5	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	l/gn	0.2	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromoform	Lgu	1	25 U	130 87	5.0 U	5.0 U	5.0 U	5.0 7.	5.0 7.
Bromomethane	Lgu Lgu	1	25 U	130 U	5.0 U	5.0 U	5.0 U	2.0 U	5.0 U
Carbon disulfide	l/gri	700	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	Lgn	5	25 U	130 %	2.0 U	5.0 U	0.0 U	5.0 U	5.0 U
Chlorobenzene	Lgn	100	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	l/gn	1	25 U	130 U	5.0 U	5.0 U	S.0 U	5.0 U	5.0 U
Chloroform	l/gri	0.2	35 U	130 U	5.0 U	5.0 U	5.0 %	5.0 U	5.0 0
Chloromethane	hgn	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	hgn	70	4.0.3	42.3	2.8.3	5.0 U	5.0 U	5.0 U	2.4.3
cis-1,3-Dichloropropene	Lgu	1	25 77	130 U	2.0 0	2.0.7	5.0 U	5.0 U	5.0 [7]
Cyclohexane	l/gri	1	25 U/UJ*	130 U/UJ*	5.0 U/UJ*	5.0 U	5.0 U/UJ*	\$.0 U/UJ*	5.0 U/UJ*
Dibromochloromethane	l/gu	140	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	hg/l	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	l/gri	700	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	l/gu	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl acetate	l/gri	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl-tert-butyl ether	l/gri	7.0	25 U	130 []	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	hgd.	1	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	l/gn	20	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	l/gri	100	25 U	130 87	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	l/Srt	5	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	l/gri	1,000	25 U	130 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1.2-Dichloroethene	l/gn	100	25 U	130 27	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U
trans-1,3-Dichloropropene	l/gu	1	25 U	130 U	S.0 U	5.0 U	5.0 U	5.0 %	5.0 C
Trichloroethene	l/gn	5	480	4,800	5.0 U	5.0 U	5.0 U	5.0 U	2.6.3
Trichlorofluoromethane	l/Sri	1	25 U/UJ*	130 U/UJ*	5.0 U/U3*	5.0 U	5.0 U/UJ*	5.0 U/UJ*	5.0 U/UJ*
Vinyl chloride	l/gu	2	25 U	130 U	S.0 U	5.0 U	5.0 U	5.0 U	2.8.3
Xylenes, Total	hgu	10,000	75 U	380 U	15 U	15 U	15 U	15 U	15 U

Table 9B Groundwater Sample Results - August 2012 GE Morrison Facility Morrison, Illinois

Commoning	i d	IEPA Class I Groundwater Standard	GW-MW1-LD-2012A	GW-AWY-LID-2012A GW-AWY-CID-2012A GW-AWY-CID-2012A	GW-MW4-LS-2012A	GW-MW4-UD-2012A	GW-MW5-1.S-2012A	GW-MW7-LS-2012A	GW-MW8-LS-2012A	GW-DUP02-2012A (Duplicate of GW- MW8-LS-2012A)
VOCs (SW846 8260B)			8/23/2012	8/23/2012	8/23/2012	8/23/2012	8/23/2012	8/23/2012	8/23/2012	8/23/2012
1.1.1-Trichloroethane	l/an	200	5.00	5.0 U	3.0.1	5.0 U	\$0.0	220	130 U	11
1,1,2,2-Tetrachlorocthane	hgn	ı	5.0 U	5.010	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	hgu		2.0 U	50U	5.0 U	50U	5.0 U	130 U	130 U	0.39 J
1.1.2-Trichloroethane	hg/l	5	5.0 U	5.0.U	5.0 U	5.0 U	5.0 U	130 €	130 €.	5.0 U
1,1-Dichloroethane	l/8rl	700	1.3.3	5.0 U	2.0 U	S.0 U	5.0 U	130 U	42 J	48.3
1,1-Dichloroethene	hgu.	7	1.8.1	5.0 U	2.0.3	1.3.3	5.0 U	200	120 J	140
1,2,4-Trichlorobenzene	hgn	70	1.1.3	\$ 0 U/UI*	5.0 U/UJ*	5.0 U	5.0 U/UJ*	130 0/10/1*	130 0/07*	5.0 U
1.2-Dibromo-3-chloropropane	l/gn	0.2	205	202	202	5.0 77	5.0 U	130 €1	130 (;	5.0 %
1.2-Dibromoethane (EDB)	hg/l	0.05	200	5.0 U	5.0 U	5.0 U	20.03	130 €	130 C	5.0 %
1,2-Dichlorobenzene	l/gu	909	5.00	500	0.03	5.0 U	5.0 U	130 U	130 U	5.0 U
1.2-Dichloroethane	l/gn	S	5.00	5.0 U	80U	200	5.0 U	130 U	130 []	2.4.3
1.2-Dichloropropane	l/gii	5	5.0 U	5.0 U	5.00	5.0 U	5.0 U	130 U.	130 L	5.0 U
1.3-Dichlorobenzene	l/gn	1	5.0 U	5.0 U	5.0 U	5.013	5.0 U	130 U	130 U	5.0 U
1.4-Dichlorobenzene	l/sn	75	5.0 T	5.0 U	5.00	5.0 U	5.013	130 E	130 %	0.0.2
2-Butanone (MEK)	Lgn		5.0 U	50U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
2-Hexanone	lan	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	Lg/l	1	0.02	\$.0U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Acetone	l/gn	6,300	20 U	7.0.7	6.1.3	5.6.3	8.3 J	500 U	500 U	20 U
Benzene	Lgu,	8	2005	50U	5.0 U	5.00	5.0 U	130 €	130 U	5.0 U
Bromodichloromethane	l/Sri	0.2	205	5.0.7	5.0 U	200	3.0 %	130 C	730 €	5.0 €
Вготоботи	hg/l	-	5.0 7	201	5.0 U	5.0 U	5.0 U	130 C	130 %	5.0 (7)
Bromomethane	L'SH	1	0.0.8	5.0 U	5.0 U	500	5,0 U	130 U	130 U	5.0 U
Carbon disulfide	hgu	200	\$.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Carbon tetrachloride	hgu	S	50U	5.0 U	5.0 U	5.0 U	5.0 U	130 €	130 C.	5.0 U
Chlorobenzene	hg/l	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 C	130 €	5.0 U
Chloroethane	hgu	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Chloroform	hgri	0.2	20.5	202	5.0 U	5.0 U	2.0.5	130 €	130 €	5.0 7.
Chloromethane	hg/l	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
cis-1,2-Dichloroethene	l/gn	7.0	5.0 U	5.0 U	1.1 J	0.71.3	5.0.13	130 C	1,400	1,500
cis-1,3-Dichloropropene	µ8/I	-	202	5.077	5.0 U	5.0 77	5.0 U	130 €.	130 %	5.07
Cyclohexane	hg/l	1	500	200	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Dibromochloromethane	hg/l	140	200	5.07	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Dichlorodifluoromethane	hg/l	1	5.0 U	200	5.0 U	5.0 U	5.010	130 U	130 U	5,0 U
Ethylbenzene	hg/l	700	500	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
Isopropylbenzene (Cumene)	hg/l	1	50U	5.0 U	5.0 U	500	5.0 U	130 U	130 U	5.0 U
Methyl acetate	l/gri	1	5.0 U	\$.00	5.0 U	50U	5.0 U	130 U	130 U	5.0 U
Methyl-tert-buryl other	hg/l	7.0	501	5.0 U	5.0 U	5.0 U	5.0 U	130 C	130 €	5.0 U
Methylcyclohexane	hgs/		5.0 U	500	500	5.0 U	5.0 U	130 U	130 U	5.0 U
Methylene chloride	µg/l	5	500	5.0 U	5.0 U	5.0.0	5.0 U	730€	35.3	5.0 U
Styrenc	l/gri	100	5.0 U	5.077	5.0 U	5.0 U	5.0 U	130 E	130 27	5.0 U
Tetrachloroethene	Lgd	5	5.0 U	500	6.2	5.0 U	5.0 U	130 C	7.087	1.0.1
Toluene	hg/l	1,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	130 U	130 U	5.0 U
trans-1.2-Dichloroethene	hgd	100	200	5.0 U	5.0 U	5.0 U	5.0 U	130 (7	130 %	3.9 J
trans-1,3-Dichloropropene	l/gri	1	2.0 U	20.0	5.0 U	5.0 U	5.0 U	130 C	130 €	5.0 U
Trichloroethene	Ng4	S	3.8.3	5.00	130	0.80 J	0,98.3	2,700	2,000	2,200
Trichlorofluoromethane	hg4	1	S.0 U	5.0 U	5.0 U	5.0 U	5.0 TJ	130 U	130 U	5.0 U
Vinyl chloride	hg4	C1	5.0 U	S.0 U	5.0 U	5.0 U	5.0 U	130 C	130 C	5.0 C
Xvienes Total	Lan	10,000	15.0	15 U	180	15 U	15.0	380 U	380 U	15 U

Table 9B Groundwater Sample Results - August 2012 GE Morrison Facility Morrison, Illinois

		IEPA Class I Groundwater			A ROOM OF GROOM WAY	ACTOR OFFICE ANTON	AC10C 32017 VIII	CW-C105D-2012A	(Duplicate of GW-
Compound	Units	Standard	GW-MW9-2012A	GW-G101D-2012A	S/23/2012	8/23/2012	8/23/2012	8/23/2012	8/23/2012
VOCs (SW846 8260B)		0000	21021200	C 0.11	5011	5011	5013	65	458
1,1,1-Trichloroethane	hgy!	200	500	2000	5011	5011	5011	5.0 U	500
1,1,2,2-Tetrachloroethane	ng/	-	200	200	200	202	5011	0.62.1	1.720
1,1,2-Trichloro-1,2,2-trifluoroethane	l/gri	1	200	000	200	200	200	4011	5011
1.1.2-Trichloroethane	us/I	5	5.0 U	000	200	5011	111	40	37
1,1-Dichloroethane	ma ₀	00/	200	200	50.0	5011	5011	170	140
1,1-Dichloroethene	MS)	- 1	50.00	5.0.17.17.17e	SOUTH	\$ 0.17(11*	\$0.0707	5.0 U	5.0 U
1,2,4-Trichlorobenzene	Ngh.	07	50000	50000	\$0.00	5017	17.05	5.077	5.07
1.2-Dibromo-3-chloropropane	hg/l	70	5.0.0	5.0 %	5077	2071	2705	205	5.0 U
1,2-Dibromoethane (EDB)	l/gn	0.05	2.0.0	200	3.00	2000	5011	5011	5013
1.2-Dichlorobenzene	l/g/l	009	2.0.0	0.00	0.00	2000	5.0.11	403	40.1
1.2-Dichloroethane	hgu	S	200	200	2000	2000	5.011	5011	5.013
1,2-Dichloropropane	100	0	2.0.0	200	000	0.00	5.017	5011	5011
1,3-Dichlorobenzene	l/gu	1	5.017	200	000	2000	2000	5071	5011
1,4-Dichlorobenzene	l/Srl	7.5	5.013	500	0.0%	2000	2000	50.00	5011
2-Butanone (MEK.)	hg/l	1	5.0 U	200	200	200	3.0.0	5,000	5000
2-Hexanone	l/gn	1	5.0 U	5011	200	200	200	2.0.0	2000
4-Methyl-2-Pentunone (MIBK)	µg/l	1	5.0 U	5.010	5.010	500	5.0 U	2.0.0	200
Acetone	hgu	6,300	20 U	20 U	5.2.3	00.7.3	6.7.3	2.7.3	6.1.0
Benzene	Ugu.	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	200
Bromodichloromethane	pan	0.2	202	205	202	5.0 7.	5.0 (5.00	200
Bromoform	hgd	1	2011	5077	5.07	5.0 U	5.0 7	5.0 6	200
Bromomethane	Ngu	1	500	5.0 U	5.0 U	5.0 U	5.0 U	500	5.0 U
Carbon disulfide	l/gii	700	5.017	500	5.0 U	5.0 U	5.0 U	200	0.00
Carbon tetrachloride	Lgu.	2	5.0 U	5013	5.0 U	5.0 U	5.0 U	5.0 U	0.0%
Chlorobenzene	l/gu	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	l/gri	ı	5.0 U	5.0 U	5.0 U	500	5.0 U	5.00	0.00
Chloroform	l/gri	0.2	5.07	2.0.5	5.077	5.0.7	5.0 U	3.0 0	200
Chloromethane	l/git	r	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.00	0.0.0
cis-1,2-Dichloroethene	hgu	70	4,4.3	5.0.0	500	500	5.0 U	IS	13
eis-1,3-Dichloropropene	hgu	1	205	205	3.0 C	2.0 ()	3.0 €	3.0 0	2.0.5
Cyclohexane	hg/l	-	2.0 U	S.0 U	5.0 U	5.0 U	2.0 U	5.1.5	0.79.3
Dibromoehloromethane	hg4	140	200	5.017	500	5.0 U	5.0 U	2000	0.00
Diehlorodifluoromethane	l/gri	1	500	3.0 U	5.0 U	5.0 U	5.010	5.0.0	0.00
Ethylbenzene	l/git	700	501	200	5.0 U	5.0 U	5.00	2.0.0	2.0.0
Isopropylbenzene (Cumene)	l/gu	1	5.0 U	500	5.013	5.0 U	5.00	5.0 U	200
Methyl acetate	l/gri	1	5.011	5013	5.0 U	500	\$.0 U	5.0 U	5.00
Methyl-tert-butyl ether	l/gri	70	5.0 U	5.010	5.0 U	500	5.0 U	5.0 U	5.0 U
Methyleyelohexane	hgu		5.0 U	5.0.U	5.0 U	500	5.0 U	5.0 U	5.0 U
Methylene chloride	l/git	5	200	5.0 U	5.0 U	5.017	5.017	5.0 U	5.0 U
Styrene	hgu	100	200	5.0 U	5.0 U	5,017	5.0 U	5.0 U	S.0 U
Tetrachloroethene	Dau.	145	0.02	200	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	Dgu	1,000	5.00	0.0°C	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1.2-Dichloroethene	Ngu	100	5.0 U	5.01J	5.0 U	5.0 U	5.0 U	5.010	5.0 U
trans-1,3-Dichloropropene	l/gu		5.0 U	S.0 U	5.0 U	5.0 U	5.0 %	2.0.2	5.0 U
Trichloroethene	L/Sri	vo.	500	5.0 U	5.0 U	5.017	5.0 U	51	49
Trichlorofluoromethane	l/gu	1	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	S.0 U	5.0 U
Vinyl chloride	hg4	e4	500	5.0 U	S.0 U	3.07	5.0 %	8.6	7.3
Xvlenes Total	l/gii	10,000	15 U	15 U	15.0	15.0	15.0	15.0	15.0

Notes:
--- Indicates there is no established screening criteria for this s

* - LCS or LCSD exceeds the control limits.

Bold - Indicates a detection of the noted compound.

Litabilists of small is aboug TDSA Character and the control of the contr

IEPA - Illinois Environmental Protection Agency
Class I Groundwater Standard - 35 Illinous Administrative Code Part
Interior – Indicates that the reporting limit is above Class I ground
I to Code Indicates that the reporting limit is above Class I ground
I to Code Indicates that the reporting limit is above Class I ground
I to Code I additional to the Code I additional I addition

U = Compound not detected.

UJ = Indicates the compound or analyte was analyzed for but 1
VOCs = Violatia normania communide.

Table 9C Groundwater Sample Results - November 2012 GE Morrison Facility Morrison, Illinois

		IEPA Class I		GW-DUP03-2012B
	77.0	Groundwater	CIVI NOVIO AGIAD	(Duplicate of GW-
Compound	Units	Standard	GW-MW10-2012B	MW10-2012B)
VOCs (SW846 8260B)	T	200	11/2/2012	11/2/2012
1,1,1-Trichloroethane	μg/l		5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	μg/l		5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	5	5.0 U	5.0 U
1,1,2-Trichloroethane	μg/l		5.0 U	5.0 U
1,1-Dichloroethane	μg/l	700	5.0 U	5.0 U
1,1-Dichloroethene	μg/l	7	5.0 U	5.0 U
1,2,4-Trichlorobenzene	μg/l	70	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	μg/l	0.2	5.0 U	5.0 U
1,2-Dibromoethane (EDB)	μg/l	0.05	5.0 U	5.0 U
1,2-Dichlorobenzene	μg/l	600	5.0 U	5.0 U
1,2-Dichloroethane	μg/l	5	5.0 U	5.0 U
1,2-Dichloropropane	μg/l	5	5.0 U	5.0 U
1,3-Dichlorobenzene	μg/l		5.0 U	5.0 U
1,4-Dichlorobenzene	μg/l	75	5.0 U	5.0 U
2-Butanone (MEK)	μg/l		5.0 U	5.0 U
2-Hexanone	μg/l		5.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	μg/l		5.0 U	5.0 U
Acetone	μg/l	6,300	20 U	20 U
Benzene	μg/l	5	5.0 U	5.0 U
Bromodichloromethane	μg/l	0.2	5.0 U	5.0 U
Bromoform	μg/l	1	5.0 U	5.0 U
Bromomethane	μg/l		5.0 U*	5.0 U*
Carbon disulfide	μg/l	700	5.0 U	5.0 U
Carbon tetrachloride	μg/l	5	5.0 U	5.0 U
Chlorobenzene	μg/l	100	5.0 U	5.0 U
Chloroethane	μg/l		5.0 U*	5.0 U*
Chloroform	μg/l	0.2	5.0 U	5.0 U
Chloromethane	μg/l		5.0 U	5.0 U
cis-1,2-Dichloroethene	μg/l	70	5.0 U	5.0 U
cis-1,3-Dichloropropene	μg/l	1	5.0 U	5.0 U
Cyclohexane	μg/l		5.0 U	5.0 U
Dibromochloromethane	μg/l	140	5.0 U	5.0 U
Dichlorodifluoromethane	μg/l		5.0 U	5.0 U
Ethylbenzene	μg/l	700	5.0 U	5.0 U
Isopropylbenzene (Cumene)	μg/l	700	5.0 U	5.0 U
Methyl acetate	μg/l		5.0 U	5.0 U
Methyl-tert-butyl ether	μg/l μg/l	70	5.0 U*	5.0 U*
Methylcyclohexane	μg/l μg/l	70	5.0 U	5.0 U*
Methylene chloride		5	5.0 U*	5.0 U*
Styrene	μg/l	100	5.0 U	
Tetrachloroethene	μg/l	5	5.0 U	5.0 U
Toluene	μg/l	1.000	5.0 U	5.0 U
	μg/l	1,000	5.0 U	5.0 U
trans-1,2-Dichloroethene	μg/l			5.0 U
trans-1,3-Dichloropropene	μg/l	1	5.0 U	5.0 U
Trichloroethene	μg/l	5	5.0 U	5.0 U
Trichlorofluoromethane	μg/l		5.0 U*	5.0 U*
Vinyl chloride	μg/l	2	5.0 U	5.0 U
Xylenes, Total	μg/l	10,000	15 U	15 U

Notes:

- --- Indicates there is no established screening criteria for this compound.
- * LCS or LCSD exceeds the control limits.

Bold - Indicates a detection of the noted compound.

IEPA - Illinois Environmental Protection Agency

Class I Groundwater Standard - 35 Illinois Administrative Code Part 742, Appendix B, Table E.

Italicized - Indicates that the reporting limit is above Class I groundwater standard.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

μg/l - Micrograms per liter

U - Compound not detected.

VOCs - Volatile organic compounds

Table 10 Groundwater Sample Results Golf Course Irrigation Wells Morrison, Illinois

Compound	Units	IEPA Class I Groundwater Standard	GW-N.WELL-2012	GW-DUP01-2012 (Duplicate of GW- N.WELL-2012)	GW-S.WELL-2012
VOCs (SW846 8260B)			8/8/2012	8/8/2012	8/8/2012
1,1,1-Trichloroethane	μg/1	200	510	620	5.0 U
1,1,2,2-Tetrachloroethane	μg/l		500 U	500 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l		500 U	500 U	5.0 U
1.1.2-Trichloroethane	μg/l	5	500 U	500 U	5.0 U
1.1-Dichloroethane	μg/l	700	500 U	500 U	5.0 U
1.1-Dichloroethene	μg/l	7	740	850	5.0 U
1.2.4-Trichlorobenzene	μg/l	70	500 U/UJ*	500 U/UJ*	5.0 U/UJ*
1,2-Dibromo-3-chloropropane	μg/1	0.2	500 U	500 U	5.0 U
1,2-Dibromoethane (EDB)	μg/l	0.05	500 U	500 U	5.0 U
1,2-Dichlorobenzene	μg/l	600	500 U	500 U	5.0 U
1,2-Dichloroethane	μg/l	5	500 U	500 U	5.0 U
1,2-Dichloropropane	μg/l	5	500 U	500 U	5.0 U
1,3-Dichlorobenzene	μg/l		500 U	500 U	5.0 U
1,4-Dichlorobenzene	μg/I μg/I	75	500 U	500 U	5.0 U
2-Butanone (MEK)	μg/I		500 U	500 U	5.0 U
2-Hexanone	μg/1 μg/1		500 U/UJ*	500 U/UJ*	5.0 U/UJ*
4-Methyl-2-Pentanone (MIBK)	μg/I		500 U	500 U	5.0 U
Acetone	μg/l	6,300	2,000 U/UJ*	2,000 U/UJ*	20 U/UJ*
Benzene	μg/l	5	500 U	500 U	5.0 U
Bromodichloromethane	μg/l	0.2	500 U	500 U	5.0 U
Bromoform	μg/l μg/l	1	500 U	500 U	5.0 U
Bromomethane	μg/I μg/I	1	500 U	500 U	5.0 U
Carbon disulfide	μg/I μg/I	700	500 U	500 U	5.0 U
Carbon distillide Carbon tetrachloride		5	500 U	500 U	
Chlorobenzene	μg/l μg/l	100	500 U	500 U	5.0 U 5.0 U
Chloroethane	μg/l	100	500 U	500 U	5.0 U
Chloroform	μg/I μg/I	0.2	500 U	500 U	5.0 U
Chloromethane	μg/I μg/I	0.2	500 U	500 U	5.0 U
cis-1,2-Dichloroethene	μg/I	70	110 J	120 J	5.0 U
cis-1,3-Dichloropropene	μg/l	1	500 U	500 U	5.0 U
Cyclohexane	μg/l	1	500 U	500 U	5.0 U
Dibromochloromethane	μg/I	140	500 U	500 U	5.0 U
Dichlorodifluoromethane	μg/I	190	500 U	500 U	5.0 U
Ethylbenzene	μg/l	700	500 U	500 U	5.0 U
Isopropylbenzene (Cumene)	μg/l	700	500 U	500 U	5.0 U
Methyl acetate	μg/l		500 U	500 U	5.0 U
Methyl-tert-butyl ether	μg/l	70	500 U	500 U	5.0 U
Methylcyclohexane	μg/l		500 U	500 U	5.0 U
Methylene chloride	μg/l	5	500 U	500 U	5.0 U
Styrene	μg/l	100	500 U	500 U	5.0 U
Tetrachloroethene	μg/l	5	500 U	500 U	5.0 U
Toluene	μg/l	1.000	500 U	500 U	5.0 U
trans-1,2-Dichloroethene	μg/l	100	500 U	500 U	5.0 U
trans-1,3-Dichloropropene	μg/l	1	500 U	500 U	5.0 U
Trichloroethene	μg/l	5	5,000	6,100	0.93 J
Trichlorofluoromethane	μg/l		500 U	500 U	5.0 U
Vinyl chloride	μg/I	2	500 U	500 U	5.0 U
Xylenes, Total	μg/l	10,000	1.500 U	1,500 U	15 U

Notes:

--- Indicates there is no established screening criteria for this compound.

Bold - Indicates a detection of the noted compound.

Highlighted result is above IEPA Class I groundwater standard.

IEPA - Illinois Environmental Protection Agency

Class I Groundwater Standard - 35 Illinois Administrative Code Part 742, Appendix B, Table E.

Italicized - Indicates that the reporting limit is above Class I groundwater standard.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

μg/l - Micrograms per liter

U - Compound not detected.

UJ - Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.

VOCs - Volatile organic compounds

 $[\]ast$ - LCS or LCSD exceeds the control limits.

Case: 3:13-cv-50348 Document #: 40-4 Filed: 02/27/15 Page 7 of 22 PageID #:1078

Table 11 **Surface Water Sample Results Golf Course Ponds** Morrison, Illinois

Compound VOCs (SW846 8260B)	Aquatic Li		Human						
	Taquette an	fe Criteria	Crit		SW-N.POND-2012	(Duplicate of SW- N.POND-2012)	SW-NPOND- 20121031	SW-SPOND- 20121102	SW-N.POND 013013
	Acute	Chronic	HTC	HNC	9/11/2012	9/11/2012	10/31/2012	11/2/2012	1/30/2013
	4,900	390		-	140*/J	120*/J	3,1 J	5.0 U	5.0 U
,1,2,2-Tetrachloroethane	1,800	140		3.2	100 U	100 U	5.0 U	5.0 U	5.0 U
,1,2-Trichloro-1,2,2-trifluoroethane	-	-		-	100 U	100 U	5.0 U	5.0 U	5.0 U
,1,2-Trichloroethane	19,000	4,400		12	100 U	100 U	5.0 U	5.0 U	5.0 U*/UJ
,1-Dichloroethane	20,000	2,000	-		100 U	100 U	5.0 U	5.0 U	5.0 U
.1-Dichloroethene	3,000	240		120	110	92 J	2,3 J	5.0 U	5.0 U
,2,4-Trichlorobenzene	370	72	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
,2-Dibromo-3-chloropropane	2,400	190			100 U	100 U	5.0 U	5,0 U	5.0 U
,2-Dibromoethane (EDB)	2,400	120	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
,2-Dichlorobenzene	210	170	-	190	100 U	100 U	5.0 U	5.0 U	800000000
,2-Dichloroethane	25,000	4,500		23	100 U	100 U	5.0 U	5.0 U	5.0 U
	4.800	380	5.7	23	100 U	100 U			5.0 U
,2-Dichloropropane ,3-Dichlorobenzene	500	200	3.7	-	100 U	100 U	5.0 U 5.0 U	5.0 U	5.0 U
	1,800	620			100 U			5.0 U	5.0 U
,4-Dichlorobenzene	320,000	26,000	-	-	100 U	100 U 100 U	5.0 U	5.0 U	5.0 U
-Butanone (MEK)						74 Y. W. S. T. W.	5.0 U	5.0 U	5.0 U
-Hexanone	12,000	950	*	-	100 U	100 U	5.0 U	5.0 U	5.0 U
-Methyl-2-Pentanone (MIBK)	4,600	1,400	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Acetone	1,500,000	120,000	141	ja	400 U	400 U	20 U	20 U	20 U
Benzene	1,100	860	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	10	1	*	13	100 U	100 U	5.0 U	5.0 U	5.0 U
Bromoform	-	-	-	50	100 U	100 U	5.0 U	5.0 U	5.0 U
Bromomethane	-	-	-	-	100 U	100 U	5.0 U	5.0 U* / UJ	5.0 U
Carbon disulfide	200	20		-	100 U*/UJ	100 U*/UJ	5.0 U	5.0 U	5.0 U*/UJ
Carbon tetrachloride	3,500	280	-	1.4	100 U	100 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	990	79	4,500	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Chloroethane	13,000	1,000	-	-	100 U	100 U	5.0 U	5.0 U*	5.0 U
Chloroform	1,900	150	-	130	100 U	100 U	5.0 U	5.0 U	5.0 U
Chloromethane	16,000	1,300		-	100 U	100 U	5.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene				-	35 J	34 J	4.0 J	5.0 U	1.9 J
eis-1,3-Dichloropropene	-	-	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Cyclohexane	-	-	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	-	-	-	9.8	100 U	100 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	-	-		-	100 U	100 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	-		-		100 U	100 U	5.0 U	5.0 U	5.0 U
sopropylbenzene (Cumene)	-				100 U	100 U	5.0 U	5.0 U	5.0 U
Methyl acetate	-			-	100 U	100 U	5.0 U	5.0 U	5.0 U
Methyl-tert-butyl ether	67,000	5,400		-	100 U	100 U	5.0 U	5.0 U* / UJ	5.0 U
Methylcyclohexane	-	-	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U* / UJ
Methylene chloride	17,000	1,400	-	330	100 U	100 U	5.0 U	5.0 U* / UJ	5.0 U
Styrene	2,500	200	-	-	100 U	100 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	1,200	150			100 U	100 U	5.0 U	5.0 U	5.0 U
oluene	1,200	150		_	100 U	100 U	5.0 U	5.0 U	5.0 U
rans-1,2-Dichloroethene			34,000		100 U	100 U	5.0 U	5.0 U	5.0 U
rans-1,3-Dichloropropene			- 34,000		100 U	100 U	5.0 U	5.0 U	
Trichloroethene	12,000	940	-	26	880	710	19	5.0 U	5.0 U
richloroetnene Frichlorofluoromethane	12,000	940	250,000	20	100 U* / UJ	100 U* / UJ	5.0 U		6.9
					100 U 7 UJ			5.0 U* / UJ	5.0 U*/UJ
Vinyl chloride Kylenes, Total	22,000	1,700	-	2.0	300 U	100 U 300 U	5.0 U	5.0 U	5.0 U 15 U

Concentrations in micrograms per liter (ug/L).
* - LCS or LCSD exceeds the control limits.

Bold - Indicates a detection of the noted compound.

Highlighted result is above one or more IEPA Derived Water Quality Criteria.

HTC - Human Threshold Criteria

HNC - Human Non-Threshold Criteria

IEPA - Illinois Environmental Protection Agency

IEPA Derived Water Quality Criteria - 35 Illinois Administrative Code Part 302.10 and Part 302.540.

Italicized - Indicates that the reporting limit exceeded one or more screening criteria

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

U - Compound not detected

VOCs - Volatile organic compounds

Exhibit 8

Selected Materials from MWH's Focused Site Investigation (FSI) Addendum (dated May 2014)

Case: 3:13-cv-50348 Document #: 40-4 Filed: 02/27/15 Page 11 of 22 PageID #:1082

Case: 3:13-cv-50348 Document #: 40-4 Filed: 02/27/15 Page 20 of 22 PageID #:1091

Document 10 – Part 5

Expert Report of Konrad J. Banaszak, Genesis Engineering & Development, dated 11/13/2014 Case: 3:13-cv-50348 Document #: 40-5 Filed: 02/27/15 Page 2 of 83 PageID #:1095

Table 1 Groundwater Monitoring Well Summary GE Morrison Facility Morrison, IL

				1		
Well ID	Туре	Screened Formation	Well Depth (feet bgs)	Screened Interval (feet amsl)	Date Installed	Notes
G101D	Stickup	Lower Dolomite	239	384.9 - 400.9	Phase I (1987) ^a	
G102D	Stickup	Upper Dolomite	82.2	629.5 - 645.5	Phase I (1987) ^a	Not Sampled ¹
G102B	Stickup	Lower Unconsolidated Sediments	27.5	669.2 - 685.2	Phase I (1987) ^a	Not Sampled ¹
G104S	Stickup	Lower Unconsolidated Sediments	17.7	606.6 - 617.1	Phase I (1987) ^a	
G104D	Stickup	Upper Dolomite	49	575.6 - 591.6	Phase I (1987) ^a	
G105S/R	Stickup	Upper Unconsolidated Sediments	24	610.2 - 626.2	Phase I (1987) ^a	Replacement Well ²
G105D	Stickup	Upper Dolomite	48.1	594.0 - 609.9	Phase I (1987) ^a	
G106D	Stickup	Upper Dolomite	22.5	609.9 - 625.9	Phase I (1987) ^a	Not Sampled ¹
MW1-LD	Stickup	Lower Dolomite	269	368.1 - 378.1	Phase II (1988-1989) ^b	
MW2-UD	Stickup	Upper Dolomite	62	578.4 - 588.4	Phase II (1988-1989) ^b	
MW3-UD	Flushmount	Upper Dolomite	102	522.7 - 532.7	Phase II (1988-1989) ^b	Damaged ³
MW4-LS	Stickup	Lower Unconsolidated Sediments	93.5	530.8 - 540.8	Phase II (1988-1989) ^b	
MW4-UD	Stickup	Upper Dolomite	91	541.6 - 546.6	Phase II (1988-1989) ^b	
MW5-LS	Flushmount	Lower Unconsolidated Sediments	83	541.0 - 551.0	Phase II (1988-1989) ^b	
MW6-BF	NA	Backfill	10.8	615.4 - 620.4	Phase II (1988-1989) ^b	Abandoned ⁴
MW7-LS	Flushmount	Lower Unconsolidated Sediments Lower Unconsolidated	100	526.0 - 536.0	FSI (2011) ^c	
MW8-LS	Flushmount	Sediments	96	529.7 - 539.7	FSI (2011) ^c	
MW-9	Flushmount	Water Table	19.5	606.9 - 616.9	FSI (2012) ^c	
MW-10	Flushmount	Lower Unconsolidated Sediments	101.5	524.1 - 534.1	FSI (2012) ^c	
MW-11	Flushmount	Upper Dolomite	70	552.5 - 562.5	Supplemental Investigation (2014) ^d	
MW11-LS	Flushmount	Lower Unconsolidated Sediments/Water Table	20	602.5 - 612.5	Supplemental Investigation (2014) ^d	
MW-12	Flushmount	Water Table	20	616.9 - 626.9	Supplemental Investigation (2014) ^d	
MW12-LS	Flushmount	Lower Unconsolidated Sediments	69	568.6 - 578.6	Supplemental Investigation (2014) ^d	
MW-13	Flushmount	Upper Dolomite	140	554.5 - 564.5	Supplemental Investigation (2014) ^d	
MW13-LS	Flushmount	Lower Unconsolidated Sediments	81	614.0 - 624.0	Supplemental Investigation (2014) ^d	

Notes:

amsl - above mean sea level bgs - below ground surface

^a Phase I Investigation conducted by John Mathes & Associates (1987) for IEPA.

^b Phase II Investigation conducted by Canonie Environmental (1988-1989) for General Electric.

^c Focused Site Investigation conducted by MWH (2011-2013) for General Electric.

^d Supplemental Investigation conducted by MWH (2014) for General Electric.

¹ Wells G102D, G103S and G106D are not sampled as part of General Electric's ongoing investigation.

² G105S/R installed as replacement well for G105S.

³ MW3-UD is damaged and unusable.

⁴ MW6-BF was installed in backfill of existing city sewer, it was abandoned by Canonie.

Page 1 of 1

Groundwater Elevation Data - May 2013 GE Morrison Facility Morrison, Illinois

	Screened Interval		Measured Top of Casing	Depth to Water Below Top of	
Monitoring Well	(feet bgs)	Screened Formation	Elevation	Casing (feet)	Groundwater Elevation
MW1-LD	259-269	Lower Dolomite	639.91	15.08	624.83
MW2-UD	52-62	Upper Dolomite	642.82	16.13	626.69
MW3-UD	92-102	Upper Dolomite	624.34	NM	NM
MW4-LS	83.5-93.5	Lower Unconsolidated Sediments	626.61	2.95	623.66
MW4-UD	86-91	Upper Dolomite	635.17	9.36	625.81
MW5-LS	73-83	Lower Unconsolidated Sediments	623.35	NM	NM
MW7-LS	90-100	Lower Unconsolidated Sediments	625.73	NM	NM
MW8-LS	96-98	Lower Unconsolidated Sediments	625.34	1.82	623.52
WM9	10-20	Water Table	626.02	7.15	618.87
MW10	91.5-101.5	Lower Unconsolidated Sediments	625.55	NM	NM
G101D	223-239	Lower Dolomite	626.10	2.52	623.58
G104S	7.2-17.7	Lower Unconsolidated Sediments	626.90	7.20	619.70
G104D	33-49	Upper Dolomite	626.90	80.9	620.82
G105S	8-24	Upper Unconsolidated Sediments	636.91	12.12	624.79
G105D	32.2-48.1	Upper Dolomite	644.39	19.24	625.15

Notes:

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on May 17, 2013.

NM - Water level not collected in May 2013.

JEF/CRS/DPP/PJV

 $P: 1011400-1011499 \\ 1011490 - GE\ Morrison \\ 4.0\ Execution\ (Project\ Deliverables) \\ 4.12\ FSI\ Addendum \\ Tables \\ 1011400-1011490 - GE\ Morrison \\ 1011400-101$

Table 2A_GW Elevations_May13\Table 1-WL Data_May13

Morrison, Illinois

Groundwater Elevation 623.96 616.16 621.45 622.75 620.74 618.54 620.97 620.98 617.60 621.63 621.22 MN M MN MN Depth to Water Below Top of Casing (feet) 18.86 22.76 15.46 18.69 12.42 MN 5.64 ΜN MM 4.60 98.6 5.12 9.30 8.36 MM Measured Top of Casing Elevation 642.82 624.34 625.55 626.10 626.90 639.91 623.35 625.73 625.34 626.02 626.90 636.91 644.39 626.61 635.17 Lower Unconsolidated Lower Unconsolidated Lower Unconsolidated Lower Unconsolidated Lower Unconsolidated Lower Unconsolidated Upper Unconsolidated Screened Formation Upper Dolomite Lower Dolomite Upper Dolomite Lower Dolomite Upper Dolomite Upper Dolomite Upper Dolomite Water Table Sediments Sediments Sediments Sediments Sediments Sediments Sediments Screened Interval (feet bgs) 91.5-101.5 83.5-93.5 7.2-17.7 223-239 259-269 92-102 90-100 52-62 32.2-48. 73-83 96-98 10-20 33-49 86-91 8-24 Monitoring Well MW2-UD MW3-UD MW4-UD MW1-LD MW4-LS MW5-LS MW7-LS MW8-LS G101D G104D MW10 G104S G105S G105D 6MM

Notes:

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on September 4, 2013.

NM - Water level not collected in September 2013.

JEF/DLG/PJV

P:\1011400-1011499\1011490 - GE Morrison\4.0 Execution (Project Deliverables)\4.12 FSI Addendum\Tables\

Table 2B_GW Elevations_Sep13\Table 1-WL Data_Sep13

Groundwater Elevation Data - January 2014 **GE Morrison Facility**

Morrison, Illinois

	Screened Interval		Measured Top of Casing	Depth to Water Below Top of	
Monitoring Well	(feet bgs)	Screened Formation	Elevation	Casing (feet)	Groundwater Elevation
MW1-LD	259-269	Lower Dolomite	639.91	17.83	622.08
MW2-UD	52-62	Upper Dolomite	642.82	19.95	622.87
MW3-UD	92-102	Upper Dolomite	624.34	NM	NM
MW4-LS	83.5-93.5	Lower Unconsolidated Sediments	626.61	5.79	620.82
MW4-UD	86-91	Upper Dolomite	635.17	12.49	622.68
MW5-LS	73-83	Lower Unconsolidated Sediments	623.35	NM	NM
MW7-LS	90-100	Lower Unconsolidated Sediments	625.73	4.83	620.90
MW8-LS	96-98	Lower Unconsolidated Sediments	625.34	4.53	620.81
WM9	10-20	Water Table	626.02	9.62	616.40
MW10	91.5-101.5	Lower Unconsolidated Sediments	625.55	3.58	621.97
MW11	02-09	Upper Dolomite	621.94	0.98	620.96
MW11-LS	10-20	Lower Unconsolidated Sediments/Water Table	622.10	1.76	620.34
MW12	10-20	Water Table	636.54	13.19	623.35
MW12-LS	69-65	Lower Unconsolidated Sediments	637.15	15.31	621.84
MW13	130-140	Upper Dolomite	55:69	71.38	622.17
MW13-LS	71-81	Lower Unconsolidated Sediments	694.50	72.04	622.46
G101D	223-239	Lower Dolomite	626.10	5.52	620.58
G104S	7.2-17.7	Lower Unconsolidated Sediments	626.90	9.82	617.08
G104D	33-49	Upper Dolomite	626.90	8.99	617.91
G105S	8-24	Upper Unconsolidated Sediments	636.91	14.82	622.09
G105D	32.2-48.1	Upper Dolomite	644.39	21.97	622.42

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on January 30, 2014. NM - Water level not collected in January 2014.

Page 1 of 1

Groundwater Elevation Data - April 2014 GE Morrison Facility

Morrison, Illinois

			LTOT LISOIL, HIMIOUS		
	Screened Interval		Measured Top of Casing	Depth to Water Below Top of	i
Monitoring Well	(feet bgs)	Screened Formation	Elevation	Casing (feet)	Groundwater Elevation
MW1-LD	259-269	Lower Dolomite	639.91	16.69	623.22
MW2-UD	52-62	Upper Dolomite	642.82	18.94	623.88
MW3-UD	92-102	Upper Dolomite	624.34	1.79	622.55
MW4-LS	83.5-93.5	Lower Unconsolidated Sediments	626.61	4.69	621.92
MW4-UD	86-91	Upper Dolomite	635.17	11.44	623.73
MW5-LS	73-83	Lower Unconsolidated Sediments	623.35	0.40	622.95
MW7-LS	90-100	Lower Unconsolidated Sediments	625.73	3.71	622.02
MW8-LS	96-98	Lower Unconsolidated Sediments	625.34	3.46	621.88
WW9	10-20	Water Table	626.02	7.74	618.28
MW10	91.5-101.5	Lower Unconsolidated Sediments	625.55	2.40	623.15
MW11	02-09	Upper Dolomite	621.94	0.00	621.94
MW11-LS	10-20	Lower Unconsolidated Sediments/Water Table	622.10	0.00	622.10
MW12	10-20	Water Table	636.54	12.53	624.01
MW12-LS	69-69	Lower Unconsolidated Sediments	637.15	14.48	622.67
MW13	130-140	Upper Dolomite	693.55	71.49	622.06
MW13-LS	71-81	Lower Unconsolidated Sediments	694.50	70.76	623.74
G101D	223-239	Lower Dolomite	626.10	4.36	621.74
G104S	7.2-17.7	Lower Unconsolidated Sediments	626.90	8.72	618.18
G104D	33-49	Upper Dolomite	626.90	7.83	619.07
G105S	8-24	Upper Unconsolidated Sediments	636.91	13.41	623.50
G105D	32.2-48.1	Upper Dolomite	644.39	20.83	623.56

Notes:

bgs - below ground surface

Elevations reported in feet above mean sea level.

Groundwater level measurements collected on April 8, 2014.

|JEF/NK/PJV P:\1011400-1011499\1011490 - GE Morrison\4.0 Execution (Project Deliverables)\4.12 FSI Addendum\Tables\ Table 2D_GW Elevations_Apr14\Table 1-WL Data_lan14

Table 3A Groundwater Sample Results - June 2013 GE Morrison Facility Morrison, Illinois

Comparison	High 200 6/11/2013	\(\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	2.2 J 2.2 J 2.2 J 2.2 J 2.0 U 5.0 U 5.	\$00.000.000.000.000.000.000.000.000.000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	N N N N N N N N N N N N N N N N N N N		6/11/2013 6/11/2013 5.0 U 5.0 U 5.0 U 5.0 U
Store	Page	S S S S S S S S S S S S S S S S S S S	223 500 500 500 500 500 500 500 50	\$00.00 \$0	2	S S S S S S S S S S S S S S S S S S S	50 U SOU SOU SOU SOU SOU SOU SOU SOU SOU S	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U
100 100	e μβ/1 5.0 U Duorocethame μβ/1 5.0 U μβ/1 7 5.0 U μβ/1 7 5.0 U μβ/1 7 5.0 U μβ/1 7 5.0 U μβ/1 6.0 5.0 U μβ/1 5 5.0 U μβ/1 7 5.0 U <td></td> <td>5.00 6.00 6.00</td> <td>\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00</td> <td>2</td> <td>2</td> <td>50 U 50 U 50 U 50 U</td> <td>5.0 U 5.0 U 5.0 U 5.0 U</td>		5.00 6.00 6.00	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	2	2	50 U 50 U 50 U 50 U	5.0 U 5.0 U 5.0 U 5.0 U
550 L 550 L 550 L NAS 900 L 550 L 550 L NAS 500 L NAS 800 L 550 L 550 L NAS 550 L NAS 800 L 550 L 550 L NAS 550 L NAS 800 L 550 L 550 L NAS 800 L 800 L 800 L 550 L 550 L NAS 800 L 800 L 800 L 550 L 550 L NAS 800 L 800 L 800 L 550 L 550 L NAS 800 L 800 L 800 L 550 L 550 L 800 L 800 L 800 L 800 L 800 L 550 L 550 L 800 L 800 L 800 L 800 L 800 L 800 L 550 L 550 L 800 L 550 L 800 L	Поотверыние µg/I — 500 U µg/I 5 500 U µg/I 70 500 U µg/I 70 500 U µg/I 70 500 U µg/I 70 500 U µg/I 0.05 5.0 U µg/I 5 5.0 U µg/I 5 5.0 U µg/I 75 5.0 U µg/I 7 5.0 U µg/I 7 5.0 U µg/I 7 5.0 U µg/I 6.30 5.0 U µg/I 7 5.0 U		5.00 U 5.	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	N N N N N N N N N N N N N N N N N N N	50 U 50 U 29 J	5.0 U 5.0 U 5.0 U
550.1 SOUTH NN 930.1 SOUTH	Page 5	2	200 L	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	X X X X X X X X X X X X X X X X X X X	50 U 50 U 29 J	5.0 U 5.0 U
5.5.10 S.5.0.1 NNS 5.0.0.1	Page	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.00 U 5.	\$00.000 \$00.00	88 88 88 88 88 88 88 88 88 88 88 88 88	S	50 U 29 J	2.0 U
5.5.10 5.5.0.1 NNS 5.0.1 NNS 9.0.1 5.5.10 5.5.0.1 NNS 5.0.1 NNS 9.0.1 5.0.1 5.0.1	μg/l 770 5.0.0 μg/l 770 5.0.0 μg/l 0.0.5 μg/l 0.0.5 μg/l 6.0.0 μg/l 5 μg/l 5 μg/l 75 μg/l 750 μg/l 750 μg/l 1 μg/l 750	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.11 1.11 1.12 1.00 1.00 1.00 1.00 1.00	200 200 200 200 200 200 200 200 200 200	8	N N N N N N N N N N N N N N N N N N N	29 J	
5.0.0 5.0.0 NS 5.0.0 NS 9.0.0 5.0.0 5.0.0 NS 5.0.0 NS 9.0.0 5.0.0 5.0.0 NS NS 9.0.0 5.0.0 NS 5.0.0 NS NS 9.0.0 5.0.0 NS 5.0.0 NS NS 9.0.0 5.0.0 NS 5.0.0 NS 9.0.0 9.0.0 5.0.0 NS 5.0.0	ради 7 7 5.00 U ради 70 5.00 U ради	20	5.0 U	000 000 000 000 000 000 000 000 000 00	80 80 80 80 80 80 80 80 80 80 80 80 80 8	N N N N N N N N N N N N N N N N N N N		2.0 U
5.5.0.U 5.5.0.U 5.5.0.U 5.0.U	1	\$\frac{1}{2}\frac{1}{2	\$00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	\$\times \times \	N N N N N N N N N N N N N N N N N N N	81	5.0 U
5,50 U 5,50 U 5,50 U 8,50 U<	Page Page 0.02 5.0 U	S	20 U S OU S OU S SOU S S	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	N N N N N N N N N N N N N N N N N N N	50 U	5.0 U
500 L 500 L <th< td=""><td> B) </td><td>SN SN S</td><td>\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00</td><td>\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00</td><td>S S S S S S S S S S S S S S S S S S S</td><td>NN NS N</td><td>30 U</td><td>1105</td></th<>	B)	SN S	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	S S S S S S S S S S S S S S S S S S S	NN NS N	30 U	1105
SADUL SADUL NS SADUL SADUL NS SADUL SADUL SADUL SADUL NS NS SADUL SADUL SADUL NS SADUL NS SADUL SADUL NS SADUL NS SADUL NS SADUL SADUL NS SADUL NS NS SADUL NS SADUL SADUL NS SADUL NS NS NS SADUL NS NS SADUL SADUL NS NS <td> Hg/I 500 5.0 U Hg/I 5 5.0 U Hg/I 5 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I - 5.0 U </td> <td>N N N N N N N N N N N N N N N N N N N</td> <td>200 S O O S O O S O O O S O O O S O O O O</td> <td>\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00</td> <td>S S S S S S S S S S S S S S S S S S S</td> <td>NS NS N</td> <td>11.05</td> <td>17.05</td>	Hg/I 500 5.0 U Hg/I 5 5.0 U Hg/I 5 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I - 5.0 U	N N N N N N N N N N N N N N N N N N N	200 S O O S O O S O O O S O O O S O O O O	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	S S S S S S S S S S S S S S S S S S S	NS N	11.05	17.05
\$6.0 U \$0.0 U<	Hg/I 5 50.0 Hg/I 5 50.0 Hg/I 5 50.0 Hg/I 75 50.0 Hg/I	SS	5.00 5.00	\$00.000 \$00.00	2	N N N N N	5011	100
\$0.01 \$0.01 \$0.02 <th< td=""><td>Hg/I 5 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I 7 5.0 U Hg/I 6.300 5.0 U Hg/I 6.30 5.0 U Hg/I 6.30 5.0 U Hg/I 7.0 5.0 U</td><td>N N N N N N N N N N N N N N N N N N N</td><td>5.00 5.00</td><td>\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00</td><td>2 S S S S S S S S S S S S S S S S S S S</td><td>NS NS N</td><td>2000</td><td>2000</td></th<>	Hg/I 5 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I 75 5.0 U Hg/I 7 5.0 U Hg/I 6.300 5.0 U Hg/I 6.30 5.0 U Hg/I 6.30 5.0 U Hg/I 7.0 5.0 U	N N N N N N N N N N N N N N N N N N N	5.00 5.00	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	2 S S S S S S S S S S S S S S S S S S S	NS N	2000	2000
5.01 5.01 NS 5.02 5.01 NS 5.02 5.02 NS 9.02 NS<	High	S S S S S S S S S S S S S S S S S S S	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	\$00.00 \$0	2 8 8 8 8 8 8 8 8 8 8 8 8	NS NS NS	30.0	0.0.6
\$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 80.0 \$ 60.0 \$ 80.0	Heart TS SOU		\$0.00 \$0.00	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00	2	NS NS	30 U	2.0 U
9.00 UL S.00 UL NS S.00 UL NS S.00 UL 9.00 UL S.00 UL NS S.00 UL NS S.00 UL 9.00 UL S.00 UL NS S.00 UL NS S.00 UL 9.00 UL S.00 UL NS S.00 UL NS S.00 UL 9.00 UL S.00 UL NS NS S.00 UL S.00 UL 9.00 UL S.00 UL NS NS S.00 UL S.00 UL 9.00 UL S.00 UL NS NS S.00 UL S.00 UL 9.00 UL S.00 UL NS NS S.00 UL NS S.00 UL 9.00 UL S.00 UL S.00 UL NS NS S.00 UL NS S.00 UL NS S.00 UL NS NS S.00 UL NS NS S.00 UL NS	High	2	\$00.000	\$00.0000000000000000000000000000000000	S	NS	50 U	2.0 U
\$0.0 WH \$0.0 WH <t< td=""><td> Hg/l</td><td>S</td><td>\$00 MM \$00 MM \$0</td><td>\$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U</td><td>S</td><td></td><td>50 U</td><td>0.03</td></t<>	Hg/l	S	\$00 MM \$0	\$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U \$.50 U	S		50 U	0.03
SOUTH SOUTH NS SOUTH NS SOUTH SOUTH SOUTH NS SOUTH NS SOUTH SOUTH SOUTH NS SOUTH NS SOUTH SOUTH SOUTH NS NS SOUTH NS SOUTH SOUTH SOUTH NS NS NS SOUTH NS SOUTH SOUTH SOUTH NS NS NS SOUTH SOUTH NS SOUTH SOUTH S	Hg/l	N N N N N N N N N N N N N N N N N N N	\$,0 U/UJ \$,0 U \$,0 U \$ \$ U \$ U \$,0 U \$,0 U \$,0 U \$,0 U \$ U \$ U \$ U \$ U \$	5.0 Uv/UJ 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NS	50 U	5.0 U
500 /r 500 /r NS	Heart Hear	S S S S S S S S S S S S S S S S S S S	50U 50U 50U 50U 50U 50U 50U 50U 50U 50U	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NS	50 U/UJ	5.0 U/UJ
200 /r 200 /r NS 300 /r NS NS 700 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 700 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 700 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 700 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS 5.0 /r NS 5.0 /r 5.0 /r NS 5.0 /r NS NS 5.0 /r NS 5.0 /r 5.0 /r NS NS 5.0 /r	Hg/I 6.300 20 U 1	N N N N N N N N N N N N N N N N N N N	20 U S O U S	20 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	8 8 8 8 8 8	SN	50 U	5.0 U
5.0 U 5.0 U 5.0 U NS 9.0 U NS 9.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U S.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U S.0 U NS 5.0 U NS NS 5.0 U NS 5.0 U 5.0 U S.0 U NS 5.0 U NS NS 5.0 U NS 5	Hgf1 5 5.0 U Hgf1 0.2 5.0 U Hgf1 1 5.0 U Hgf1 7.00 5.0 U Hgf1 7.00 5.0 U Hgf1 0.2 5.0 U Hgf1 5.0 U Hgf1 5.0 U Hgf1 5.0 U Hgf1 70 5.0 U	N N N N N N N N N N N N N N N N N N N	50U 50U 50U 50U 50U 50U 50U 50U 50U	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	N N N N N N N N N N N N N N N N N N N	SN	200 U	20 []
SOUT SOUT NS NS SOUT 50.0 5.0.0 NS 5.0.0 NS 5.0.0 5.0.0 5.0.0 NS 5.0.0 NS 5.0.0 5.0.0 NS 5.0.0 NS 5.0.0 NS 5.0.0 5.0.0 S.0.0 NS 5.0.0 NS 5.0.0 NS 5.0.0 5.0.0 S.0.0 NS 5.0.0 NS NS 5.0.0 NS 5.0.0 <td> Hgf 0.2</td> <td>N N N N N N N N N N N N N N N N N N N</td> <td>5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U</td> <td>5.0 U 5.0 U 5.0 U 5.0 U 5.0 U</td> <td>N N N N N N N N N N N N N N N N N N N</td> <td>NS</td> <td>50 U</td> <td>5.01</td>	Hgf 0.2	N N N N N N N N N N N N N N N N N N N	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	N N N N N N N N N N N N N N N N N N N	NS	50 U	5.01
5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U NS 5.0 U NS NS NS 5.0 U NS 5.0 U 5.0 U NS 5.0 U NS 5.0 U N	Hgf -1	N N N N N N N N N N N N N N N N N N N	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	5.0 U 5.0 U 5.0 U 5.0 U	NS NS	SN	50 U	5.0 U
\$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 <	Hgf1 700 5.0 U	N N N N N N N N N N N N N N N N N N N	5.0 U S.0 U	5.0 U 5.0 U 5.0 U 5.0 U	SN NS	SN	20 07	1105
5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U 8.0 U NS 5.0 U 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U 5.0 U NS 5.0 U 5.0 U NS	Page 700 5.0 U 1.0 1	N N N N N N N N N N N N N N N N N N N	\$.00 \$.00 \$.00 \$.00	5.0 U 5.0 U 5.0 U	NS	SN	1105	5011
5.0 U 5.0 U NNS 5.0 U NNS N	Hg/I S S.O.U Hg/I 100 S.O.U Hg/I 0.2 S.O.U Hg/I S.O.U Hg/I S.O.U Hg/I 70 S.O.U Hg/I 70 S.O.U Hg/I S.O.U	N N N N N N N N N N N N N N N N N N N	5.0 U 5.0 U 5.0 U	5.0 U 5.0 U	200	SN	50.11	5000
5.01 5.01 NN 5.01 NN 5.00 5.02 5.02 NN NN NN 5.00 5.02 5.02 NN NN NN 5.00 5.01 5.02 NN NN NN 5.00 5.01 5.01 NN S.01 NN NN S.00 5.02 5.02 NN NN NN S.00 NN 5.02 5.02 NN NN NN S.00 NN S.00 5.02 5.02 NN S.02 NN NN S.00 NN S.00 5.02 5.02 NN S.02 NN NN S.00 NN S.00 5.02 5.02 NN S.02 NN NN S.00 NN S.00 5.02 5.02 NN S.02 NN NN S.00 NN S.00 5.02 5.02 NN S.00	Hg/l 100 5.0 U Hg/l	NS NS NS	5.0 U 5.0 U 5.0 U	5.0 U	SN	SN	2000	5000
5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS 5.0 U NS 5.0 U 5.0 U 5.0 U NS 5.0 U NS NS 5.0 U NS NS 5.0 U NS	Hg/l	SN	5.0 U		NS	NS	5011	2000
\$0.0 \$0.0 NS \$0.0 NS NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS NS \$0.0 \$0.0 \$0.0 NS \$0.0 4.9 NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0	Hg/A	G. W	5.0 U	5.0 11	SN	NS.	50.11	2000
\$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.01 NS \$0.0 \$0.0 \$0.0 \$0.01 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0	Hg/l	LN3		5.0 U	SN	NS	2000	5000
\$0.0 \$0.0 NS \$0.0 49.3 NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS NS \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0	нед 70 5.0.0 нед 1 5.0.0 нед 5.0.0	SN	5.0 U	5011	NS	SN SN	2000	2000
\$0.0 \$0.0 NS \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 NS \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 </td <td>нgл 1 5.0 U</td> <td>SN</td> <td>5.011</td> <td>107</td> <td>SIV.</td> <td>OV.</td> <td>0.00</td> <td>0.0.0</td>	нgл 1 5.0 U	SN	5.011	107	SIV.	OV.	0.00	0.0.0
\$0.0 \$0.0 NS \$0.0 NS \$0.0 \$0.0 \$0.0 NS \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0	10°S – ηδη	SN	1105	1103	SW	CNI	2,300	fer
\$.0.U \$.0.U NS \$.0.U NS \$.0.U \$.0.U \$.0.U \$.0.U NS \$.0.U \$.0.U \$.0.U NS \$.0.U \$.0.U NS \$.0.U \$.0.U NS \$.0.U \$.0.U NS \$.0.U \$.0.U NS \$.0.U \$.0.U NS NS \$.0.U \$.0.U NS \$.0.U \$.0.U NS NS \$.0.U \$.0.U		SN	5011	2000	N. M.	CNI	200	5.0 0
5.0 U 5.0 U 5.0 U 7.0 U <th< td=""><td>ug/1 140 5.0 U</td><td>UN N</td><td>5011</td><td>2000</td><td>ON.</td><td>SV.</td><td>2000</td><td>2.0 U</td></th<>	ug/1 140 5.0 U	UN N	5011	2000	ON.	SV.	2000	2.0 U
5.0.U 5.0.U NS 5.0.U NS 50.U 5.0.U 5.0.U NS 5.0.U NS 50.U 25.U 25.U 5.0.U NS 8.0.U 8.0.U 25.U 25.U 3.0.U NS 8.0.U 8.0.U 5.0.U 5.0.U NS 5.0.U NS 50.U 5.0.U 5.0.U NS NS 8.0.U 8.0.U 5.0.U 5.0.U NS 5.0.U NS 8.0.U 5.0.U 5.0.U NS NS 8.0.U 8.0.U 5.0.U 5.0.U NS NS 8.0.U 8.0.U 5.0.U 5.0.U NS NS 8.0.U 8.0.U 5.0.U NS 5.0.U NS NS 8.0.U 5.0.U NS 5.0.U NS NS 8.0.U 5.0.U NS 5.0.U NS NS 8.0.U 5.0.U S.0.U NS NS </td <td>1105</td> <td>0.00</td> <td>200</td> <td>0 000</td> <td>CN.</td> <td>NS</td> <td>20.0</td> <td>2.0 U</td>	1105	0.00	200	0 000	CN.	NS	20.0	2.0 U
\$5.0 U \$5.0 U NS \$5.0 U NS \$50.0 U \$5.0 U \$5.0 U NS \$5.0 U NS \$50.0 U \$5.0 U \$5.0 U NS \$5.0 U NS \$50.0 U \$5.0 U \$5.0 U NS \$5.0 U NS \$50.0 U \$5.0 U \$5.0 U NS NS \$50.0 U NS \$50.0 U \$5.0 U \$5.0 U NS \$5.0 U NS \$50.0 U NS <td>ug/1 700 5.0 U</td> <td>O N</td> <td>2000</td> <td>0.000</td> <td>SNI N</td> <td>SN</td> <td>20 0</td> <td>2.0 U</td>	ug/1 700 5.0 U	O N	2000	0.000	SNI N	SN	20 0	2.0 U
25 U 25 U NS NS 25 U NS NS NS NS NS NS NS	1105 1/811	2 02	50.0	2000	NS NS	NS	20 U	2.0 U
SOU SOU NS SOU SOU NS SOU SOU NS SOU SOU NS SOU SOU SOU NS SOU SOU SOU NS SOU SOU SOU NS SOU SOU SOU SOU SOU NS SOU	1156 //811	SIN	2000	2000	NS	NS	20 U	5.0 U
S.O.U S.O.U NS SOU S.O.U S.O.U NS NS SOU S.O.U NS NS NS NS SOU S.O.U	110.5	CNI	23.0	000	NS	NS	250 U	25 U
S.O.U S.O.U NS S.O.U NS S.O.U NS S.O.U	Dail Paris	CNI	0.0.0	2.0 U	NS	NS	50 U	5.0 U
S.O.U S.O.U NS S.O.U NS SOU S.O.U S.O.U NS S.O.U NS SOU S.O.U S.O.U NS NS SOU SOU S.O.U S.O.U NS NS SOU NS SOU S.O.U S.O.U NS S.O.U NS NS SOU S.O.U NS S.O.U NS NS NS SOU S.O.U NS S.O.U NS NS SOU SOU S.O.U NS S.O.U NS NS SOU SOU S.O.U NS S.O.U NS NS SOU SOU S.O.U NS S.O.U NS NS NS SOU S.O.U NS S.O.U NS NS NS NS S.O.U NS S.O.U NS NS NS NO S.O.U S.O.U NS NS	2000 S No.	NS	5.0 U	5.0 U	NS	NS	50 U	5.0 U
S.0.1 S.0.1 NS S.0.1 NS S.0.1 NS S.0.1	0.01.0 0.01 1.00 1.00 1.00 1.00 1.00 1.	SNI	2.0 0	5.0 U	SN	NS	50 U	5.0 U
Solu Solu NS Solu NS Solu NS Solu NS Solu Solu NS Solu Solu Solu Solu Solu Solu Solu Solu NS Solu Solu Solu NS Solu Solu Solu NS Solu Solu NS Solu Solu NS Solu Solu Solu NS Solu Solu NS Solu Solu NS Solu Solu Solu NS Solu NS Solu Solu NS Solu Solu NS Solu Solu NS Solu Solu Solu Solu NS Solu So	0.00 100 100 100 100 100 100 100 100 100	NS III	5.0 U	5.0 U	NS	NS	50 U	5.0 U
SAU SAU NS SAU NS SAU NS SAU NS SAU NS SAU SAU SAU NS SAU SAU SAU NS SAU SAU SAU SAU NS SAU S	73.0 U	NS	11	5.0 U	SN	NS	50 U	5.0 U
SOU	1,000 5.00	NS	5.0 U	5.0 U	NS	NS	50 U	5.0 U
2.2.5 5.0.0 NS 5.0.0 NS 5.0.0 NS 5.0.0 NS 5.0.0 NS 5.0.0 5.0.0 NS 5.0.0 NS 5.0.0 NS NS S.0.0 5.0.0 S.0.0 NS S.0.0 S.0.0 NS NS S.0.0 5.0.0 S.0.0 NS S.0.0 NS S.0.0 NS S.0.0 5.0.0 NS S.0.0 NS S.0.0 NS NS S.0.0 5.0.0 NS NS S.0.0 NS NS S.0.0 7.0.0 NS NS NS S.0.0 NS NS S.0.0 8.0.0 NS NS S.0.0 NS NS S.0.0 9.0.0 NS NS S.0.0 NS S.0.0 1.0.0 NS NS S.0.0 NS NS S.0.0 1.0.0 NS NS S.0.0 NS NS S.0.0 1.0.0 NS NS NS NS S.0.0 NS NS NS NS NS NS NS N	0.00	NS	5.0 U	4.4 J	NS	SN	7.9 J	5.0 U
S.O.U S.O.U NS S.O.U	100 V	No.	2.00	5.0 U	NS	NS	20 U	5.0 U
SOU SOU SOU NS SOU S	nethane Lus/i - 5 011	000	18	3.2.3	NS	NS	263	5.0 U
10 U 10 U NS NS 10 U NS 10 U NS 10 U NS 10 U NS NS NS 10 U NS	ug/ 2 507	SON. SA	2000	5.0 U	NS	NS	20 U	5.0 U
COMMITTEES * LCGS or LCGS becaused the control limits. J. Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. U Compound or analyzed for but not detected. W Indicates the conjugacy and variablyzed for but not detected. The sample detection limit is an estimated value. X/ - Data qualifier acided by laboratory.	1101 00001 Pan	SM	2.00	200	NS	NS	50 U	5.0 U
	0.01	CNI	10.01	10.0	NS	NS	100 U	101
		eds the control limits.						
	erroundwater standard.	don above the adjusted method detects	on limit and below the adju	sted reporting limit.				
		cled.						
		ound or analyte was analyzed for but n	not detected. The sample di	tection limit is an estimated	value.			
		d by laboratory.						

Notes:

- Indicates there is no established screening criteria for this compound.

Bold - Indicates a detection of the noted compound.

Bold - Indicates a detection of the noted compound.

Highlighted result is above HEPA Class I groundwater standard.

HEPA - Illinois Environmental Procession Against The Code Part 742. Appendix R. Table E. Indicates of Indicates that the reporting limit is above Class I groundwater standard.

NS - Not sampled in June 2013

VOCs - Volatile organic compounds.

JERICRSDPRPIV PAIO 1400-1011499/1011490 - GE Morrison'il D Execution (Project Deliverables)W, 12 PSI Addendum/Tables/Table SA_MW Results_Jun/TAWW VOC Results_Jun/13

Table 3A
Groundwater Sample Results - June 2013
GE Morrison Facility
Morrison, Illinois

Patronamy	200	Groundwater Standard	GW-DUP02-2013A (Duplicate of GW- MW9-2013A)	CW-NW10-20134	CW.C101D.2013A	GW-G1048-2013A	GW-C104D-20134	GW-G105S-2013A	GW-G105D-2013A	(Duplicate of GW-
OCs (SW846 8260B)	Cameo	Control	6/11/2013	NS	6/11/2013	6/11/2013	6/11/2013	6/11/2013	6/11/2013	6/11/2013
1.1-Trichloroethane	l/sin	200	5.0 U	NS	5.0 U	5.0 U	5.0 U	1.2.3	260	200
1.2.2-Tetrachloroethane	l/gn	-	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
1,2-Trichloro-1,2,2-trifluoroethane	l/gu	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
1,2-Trichloroethane	Ngu	5	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
.1-Dichloroethane	Lgu Lgu	700	5.0 U	NS	5.0 U	5.0 U	5.0 U	13.3	89	58
.I-Dichloroethene	ngn Vgn	7	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	360	250
2,4-Trichlorobenzene	Ngu	70	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
.2-Dibromo-3-chloropropane	l/gu	0.2	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
2-Dibromoethane (EDB)	l/gn	0.05	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
.2-Dichlorobenzenc	l/gn	009	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
2-Dichloroethane	l/an	5	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
.2-Dichloropropane	l/m	5	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
3-Dichlorobenzene	l/Sn	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
4-Dichlorobenzene	l/an	75	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
-Butanone (MEK)	l/an		5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Hexanone	1/371	1	5.0 U*/UJ	NS	5.0 U/U	5.0 U/UJ	5.0 U/UJ	5.0 U/UJ	35 U*/UJ	35 U*/UJ
1-Methyl-2-Pentanone (MIBK)	L/SU		5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Acetone	l/gn	6,300	20 U	SN	20 U	20 U	20 U	20 U	140 U	140 U
Benzene	L/gri	5	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Bromodichloromethane	hgh	0.2	5.0 U	SN	S.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Вготобот	l/gri	-	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Bromomethane	l/gri	-	2:0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Zarbon disulfide	µg/l	700	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Carbon tetrachloride	l/gri	5	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Chlorobenzene	hgu	100	2.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Chloroethane	hgu	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Chloroform	hgu	0.2	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 0	35 U
Chloromethane	µg/l	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
cis-1,2-Dichloroethene	l/gπ	70	1.2 J/J	NS	5.0 U	5.0 U	5.0 U	5.0 U	18.1	16 J
sis-1,3-Dichloropropene	hgu		5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
yclohexane	NgH		2:0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Dibromochloromethane	иgл	140	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Dichlorodifluoromethane	l/grd	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Ethylbenzene	l/gH	700	2:0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
sopropylbenzene (Cumene)	hg/l		5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Methyl acetate	hg/l	1	25 U	NS	25 U	25 U	25 U	25 U	180 U	180 U
Methyl-tert-butyl ether	l/gn	70	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Methylcyclohexane	hgu	1	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Aethylene chloride	l/gri	5	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Styrene	hgu	100	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
etrachloroethene	l/gu	5	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
oluene	hg/l	1,000	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
rans-1,2-Dichloroethene	hgu	100	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
rans-1,3-Dichloropropene	hgu	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
Trichloroethene	l/gn	2	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	210	180
Trichlorofluoromethane	l/gri	ŀ	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	35 U	35 U
/inyl chloride	l/gri	2	5.0 U	NS	5.0 U	2.0 U	5.0 U	5.0 U	35 U	35 U
Vilenes Total	1/611	10,000	10 U	NS	10 01	10 U	100	10 U	70.11	11.02

Outsilifers:

1. **LiCk or L/CSD exceeds the control limits.

1. **LiCk or L/CSD exceeds the control limits.

U. Compound not detected.

U. Indicate the compound or enables were analyzed for but not detected. The sample detection limit is an ear.

W. Dan qualifer added by alteratory.

R. - Dan qualifer added by dan validator.

erables)4.12 FSI Addendum/Tabkes/Table 3A_MW Revults_Jun13/MW VOC Results_Jun13 JEF/CRS/DPP/PJV PAI011400-1011499\1011490 - GE Morri

Table 3B
Groundwater Sample Results - September 2013
GE Morrison Facility
Morrison, Illinois

Compound	Units	Groundwater	GW-MW1-LD-2013B	GW-MW2-UD-2013B	GW-MW3-UD-2013B	GW-MW4-LS-2013B	(Duplicate of GW-MW4-LS-2013B)	GW-MW4-UD-2013B	GW-MW5-LS-2013B	GW-MW7-LS-2013B	GW-N
VOCs (SW846 8260B)			9/25/2013		NS		9/25/2013	9/25/2013 9/25/2013	NS	NS	9/25/2013
1 Thicklorophana	11011	UUC	5.011	5011	SN	2.4.1	3.3.1	5.0 U	NS	SN	100 U
1.2.2-Tetrachloroethane	l)ou	1	110.5	5.0 U	SZ	5.0 U	5.0 U	5.0 U	NS	NS	100 U
1 2-Trichloro-1 2 2-trifluorostbane	1/0/1	1	5.011	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	10001
1 2-Trichloroethane	Vall	v	5.0 U	5.0 U	SN	5.0 U	5.00	5.0 U	NS	NS	1001
1-Dichlorosthane	l/an	700	5.0 U	5.0 U	NS	5.0 U	5.0 U	5.0 U	SN	SN	U 001
1-Dichloreathene	Wan.	7	N.0.2	5.0 U	NS	1.7.3	2.3 J	5.0 U	NS	NS	71.3
2 4-Trichlorobenzene	Van	70	2.07	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	SN	100 I
2-Dibromo-3-chloropronanc	Von	0.0	20.03	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	100 U
2-Dibromoethane (FDR)	Ven	\$0.0	5.07	208	SN	5.0 U	5.0 U	5.0 U	NS	NS	J 00 I
2 Dichlorohanzano	100	009	5011	5.011	SN	0.05	5.0 U	5.0 U	NS	SN	U 001
2-Dichlorethane	Von	200	105	5.0 U	SN	5.0 U	5.0 U	5.0 U	NS	NS	7 00 T
2-Dichloropropans	110/1	. 4	5.011	1105	SN	5.0 U	5.0 U	5.0 U	NS	NS	100 U
3-Dichlorobenzene	Don		5011	1105	SN	5.0 U	5.0 U	S.0 U	NS	NS	100 U
1.3-Dichlorohangana	100/1	75	5011	5011	SN	5011	5.017	5.017	SN	NS	U001
2 Buttage (AGEV)	1000	2	100	50.0	SN	5011	2002	200	SN	SN	1000
2-Dumitoric (Milax)	1000		50.00	5011	No	5011	1105	5017	NS	NSV	1001
4-Methyl 2-Pentanone (MIRK)	Varia		0.05	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	1000
Acetone	l'an	6,300	20 U	20 U	NS	20 U	20 U	20 U	NS	SN	400 U
Benzene	L'ST	5	5.0 U	5.0 U	NS	5.0 U	S.0 U	S.0 U	NS	NS	J 00 I
Bromodichloromethane	I/Sin	0.2	5.0 U	5.00	NS	200	5.0 U	5.0 U	NS	SN	100 U
Bromoform	l/gh	-	5.0 U	5.0 U	NS	5.0 U	5.0 0	5.0 U	NS	SN	700 U
Bromomethane	Nau	1	5.0 U	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	SN	100 U
Carbon disulfide	VSH	700	5.0 U	5.0 U	SN	5.0 U	3.0 U	5.0 U	NS	SN	U 000 I
Carbon tetrachloride	l/gu	v	5.0 U	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	SN	100 U
Chlorobenzene	l/Srl	100	5.0 U	0.0°S	SN	5.0 U	5.0 U	5.0 U	NS	NS	100 U
Chloroethane	l/gu	I	5.0 U	2.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	100 U
Chloroform	l/gri	0.2	5.0 U	5.0 U	SN	5.0 U	5.0 U	5.0 U	NS	NS	100 U
Chloromethane	l/gu	1	5.0 U	5.0 U	NS	5.0 U	2.0 U	5.0 U	NS	NS	100 U
cis-1.2-Dichloroethene	l/git	7.0	5.0 U	5.0 U	NS	5.0 U	0.8.3	5.4	SN	SN	1,400
eis-1.3-Dichloropropene	l/gu		200	S.0 U	NS	5.0 U	5.0 U	5.0 U	NS	SN	700 U
Cyclohexane	Nan	1	5.0 U	5.0 U	NS	5.0 U	5.0 U	2.0 U	NS	NS	100 U
Dibromochloromethane	1/811	140	5.0 U	5.0 U	NS	5.0 U	2.0 C	2.0.0	SN	SN	100 U
Dichlorodifluoromethane	l/gu	1	5.0 U	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	SN	100 U
Bthylbenzene	l/Sri	700	5.0 U	5.0 U	NS	5.0 U	5.0 U	2.0 U	NS	SN	100 U
Isopropylbenzene (Cumene)	l/gu	1	5.0 U	2.0 U	NS	5.0 U	S.0 U	2.0 U	NS	NS	100 U
Methyl acetate	l/gri	1	25 U	25 U	NS	25 U	25 U	25 U	NS	NS	200 U
Methyl-tert-butyl ether	Ngn	7.0	5.0 U	5.0 U	NS	5.0 U	2.0 U	5.0 U	NS	NS	100 U
Methylcyclohexane	l/Sri	T.	5.0.U	5.0 U	SN	5.0 U	5.0 U	5.0 U	NS	NS	100 U
Methylene chloride	Lgu	5	5.0 U	2.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	J 00 I
Styrene	L/Srl	100	0.0.2	S.0 U	NS	5.0 U	S.0 U	S.0 U	SN	NS	1001
Tetrachloroethene	l/gri	S	5.0 U	8.5	NS	13	19	5.0 U	NS	NS	U 001
Toluene	NSH	1,000	2.0 U	5.0 U	SN	5.0 U	200	5.0 U	NS	SN	100 U
trans-1,2-Dichloroethene	l/gri	100	5.0 U	5.0 U	SN	5.0 U	5.0 U	4.9 J	NS	NS	100 U
trans-1,3-Dichloropropene	рян	_	5.0 U	5.0 U.	SN	5.0 U	5.0 U	5.0 U	NS	SN	100 U
Trichlornethene	l/gri	S	1.9 J	5.0 U	SN	130	130	3.6 J	NS	SN	180
Trichlorofluoromethane	Иди	1	5.0 U	5.0 U	NS	5.0 U	5,0 U	5.0 U	NS	SN	U 001
Vinyl chloride	l/gri	2	5.0 U	5.0 U	NS	5.0 U	5.0 U	5.0 U	NS	NS	100 U
Xvienes Total	L'oii	000 01	1001	101	SZ	101	10 0	10 01	SN	22	11 000

Notes:

- Indicates there is no established screening enterin for this compound.

Sold - Indicates of edecetion of the noted compound.

Highlighted result is above IEPA Class I groundwater standard.

Indicates that the reporting limit is above Class I groundwater standard.

Table 3B
Groundwater Sample Results - September 2013
GE Morrison Facility
Morrison, Illinois

Communic	Ilnife	IEPA Class I Groundwater Standard	GW-MW9-2013B	GW-MW10-2013B	GW-G101D-2013B	GW-G104S-2013B	GW-G104D-2013B	GW-G105S-2013B	GW-G105D-2013B	GW-DUPU-2015B (Duplicate of GW-G105D-2013B)
numpduion control of the	Cuito	Ottomation	0050013	SN	9/25/2013	9/25/2013	9/25/2013	9/25/2013	9/25/2013	9/25/2013
VOCs (SW846 8260B)	-	900	5.027	ON	5011	5011	5.011	5.011	87	64
1,1,1-Trichloroethane	l/g/l	200	3,00	NO	0.00	1108	5011	5011	40.13	25 U
1,1,2,2-Tetrachloroethane	hg/l	1	200	CN ON	2000	2000	5011	5011	40 13	25 U
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l	1	2.0 0	ON.	0.00	2000	50.0	1105	10 11	25.11
1,1,2-Trichloroethane	l/gu	5	S.0 U	SN	0.00	3.00	2.00	0.00	300	yy
1,1-Dichloroethane	l/gri	700	2.0 U	SS	5.0 U	2.0 0	2.0.0	0.00	400	270
1.1-Dichloroethene	l/gri	7	2.0 U	NS	5.0 U	5.0 U	2.0 U	0.00	490	320
1.2.4-Trichlorobenzene	l/an	70	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25.0
1 2-Dibromo-3-chloropropane	l/sin	0.2	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 0	0.62
1.2 Dibromoethune (HDR)	Von.	0.05	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
1 2-Dichlorohanzane	Van	009	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
1.2 Dichloroshun	1/011	v	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
1.2-Diahlamananana	119/1	v	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
1,2-Distriction opinional	non.	1	1105	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
1,5-Dichloropenzene	1881	26	5011	SN	5011	5.0 U	5.0 U	5.0 U	40 U	25 U
1,4-Dichlorobenzene	ngn	13	2000	SN	5011	5.0 U	5.0 U	5.0 U	40 U	25 U
2-Butanone (MEK)	HØI	-	0.00	ON.	5000	5011	5011	5011	4011	25 U
2-Hexanone	hg/l	1	0.0.0	CNI	0.00	2.0.0	5011	5011	40 11	25 U
4-Methyl-2-Pentanone (MIBK)	hgu	-	0.82.0	SNI	3.0.0	11.00	1100	20.11	11 09 1	1001
Acetone	µ8/1	0,500	20.0	SNI N	200	5011	5011	5011	40.77	2577
Benzene	hg/l	0	2.0.0	CNI	0.000	200	2005	200	40.17	25 U
Bromodichloromethane	µg/l	0.7	2.0.0	SNI SNI	2002	2002	5077	5077	40.17	12.50
Bromoform	l/gri		5.0 U	SN	2.0.0	2,00	2.0.0	2000	4011	25.11
Bromomethane	l/gu	-	5.0 C	SN	2.0 0	3.0.0	2000	2000	1100	1156
Carbon disuffide	l/gu	700	5.0 U	SN	5.0 0	5.0.0	20.0	2.00	70 71	1136
Carbon tetrachloride	Ngu	5	5.0 U	NS	5.0 U	2.0 U	0.0.0	3.00	40.0	0.67
Chlorobenzene	1/8н	100	5.0 U	SN	5.0 U	0.00	5.00	3.00	40.11	11.50
Chloroethane	Vgrl	1	5.0 U	NS	0.0.0	2.0 0	200	3.00	40.00	25.77
Chloroform	1/8rl	0.2	5.0 U	NS	2.00	2.0.0	2.0.0	200	0.04	0.00
Chloromethane	l/gri	-	5.0 U	NS	5.0 U	5.0 U	5.0 U	2.0 0	400	0.67
cis-1,2-Dichloroethene	l/gri	70	2.0 J	NS	0.98 J	5.0 U	5.0 U	5.0 U	19.5	11.3
cis-1,3-Dichloropropene	l/gri	-	S.0 U	NS	5.0 U	200	5.0 U	5.0 0	40.0	0.00
Cyclohexane	l/gri	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	2.0 0	0.05	0.07
Dibromochloromethane	l/gri	140	5.0 U	NS	5.0 U	5.0 U	2.00	0.0.0	40.0	0.67
Dichlorodifluoromethane	l/gri	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40.0	0.00
Ethylbenzene	l/gri	700	2.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 U	0.52
Isopropylbenzene (Cumene)	Изи	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	0.0.0	40 0	0.62
Methyl acetate	l/βri	ı	25 U	NS	25 U	25 U	25 U	25 U	2000	130.0
Methyl-tert-butyl ether	Ngu I	20	2.0 U	NS	5.0 U	5.0 U	5.0 U	3.0 0	40.0	000
Methylcyclohexane	l/gri	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	0.0.0	40.0	0 00
Methylene chloride	l/gu	5	2.0 U	NS	5.0 U	2.0.0	20.0	0.0.0	40.0	0.67
Styrene	l/gri	100	5.0 U	NS	5.0 U	5.0 U	5.0 U	0.00	40.0	0.67
Tetrachloroethene	l/gri	5	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 0	0 67
Toluene	l/gri	1,000	2.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 D	25 U
trans-1,2-Dichloroethene	l/gu	100	5.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
trans-1,3-Dichloropropene	l/gµ	1	5.0 U	NS	5.0 U	5.0 U	5.0 U	5.0 U	40 U	25 U
Trichloroethene	l/gri	5	2.0 U	SN	5.0 U	5.0 U	5.0 U	5.0 U	170	130
Trichlorofluoromethane	Ngn	-	0.0 U	SN	5.0 U	S.0 U	5.0 U	5.0 U	40 U	25 U
Vinyl chloride	l/grl	2	203	SN	2.0 U	5.0 U	5.0 U	5.0 U	18.3	14.3
Western Warnin	1/0/1	10,000	10.01	NS	10 U	10 U	101	10.01	008	50 U

— Indicates there is no established servering criteria for this compound.

Bold - Indicates a delection of the needed compound.

Indicates a delection of the needed compound.

Indicates a delection of the needed compound.

Indicated - Indicates that the respecting limit is above Class I groundwater standard.

Table 3C Groundwater Sample Results - February 2014 GE Morrison Facility Morrison, Illinois

Princerano	Thife	Groundwater Standard	CW.MW1-1 D-2014A	GW-MW2-11D-2014A	CW-WW3-IID-2014A	GW-MW4-I.S-2014A	GW-DUP01-2014A (Duplicate of GW-MW4-LS-2014A)	GW-MW4-UD-2014A	GW-MW5-LS-2014A	GW-MW7-LS-2014A	GW-MW8-LS-2014A
Compound	Omes	Standard	2/12/2012		NS		2/13/2014	2/13/2014		-	2/13/2014
VOCs (SW846 8260B)			2/12/2/13	4102/61/2	CNI	1107/07	2 2 2 2	0 7.2 T	OIN	110.7	200 11
.1.1-Trichloroethane	l/gri	200	0.33 J	1.00	CNI	0.00	L 4.4 J	0000	ON	12001	11 000
1.1.2,2-Tetrachloroethane	hg/l	1	1.0 U	1.0 U	NS	3.0.0	2000	0.07	CNI	130.0	2007
1.1.2-Trichloro-1.2,2-trifluoroethane	hgu	1	1.0 U	1.0 U	NS	5.0 U	5.0 U	0.07	SN	130 0	200 0
1,1,2-Trichloroethane	Ngu	S	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130.0	7007
.1-Dichloroethane	l/gri	700	1.2	1.0 U	NS	5.0 U	5.0 U	0.30 J	NS	130 U	38.1
.I-Dichloroethene	Ngu	7	1.8	1.0 U	NS	1.7.3	5.0 U	1.2	NS	110 J	92.3
2.4-Trichlorobenzene	I/Sin	70	1.0 U	1.0 U	SN	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
2-Dibromo-3-chloropropane	l/an	0.2	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
2-Dibromoethane (FDB)	l/an	0.05	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
2-Dichlorobenzene	l/an	009	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	SN	130 U	200 U
2-Dishloroethane	Van	40	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	SN	130 U	200 U
2-Dichloropionape	1/0/1	v	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	SN	130 U	200 U
3-Dichlorohanzana	Poli	1	101	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
A Dichlorohangana	110/1	75	1011	1.01	SN	5.0 U	5.0 U	1.0 U	SN	130 U	200 U
2 Button (ABV)	1000		1105	00	SN	25 U	25 U	5.0 U	NS	130 U	1,000 U
Therman	1/61		5011	5011	SN	2517	2513	5.0 U	SN	130 U	1,000 U
2-nexalione	1000		5011	5011	SZ	25 11	25 U	5.0 U	NS	130 U	1,000 U
Acetone	1/60	6.300	5.9	12	NS	25 U	25 U	5.3	SN	130 U	1,000 U
Benzene	110/	v	0.31.1	1.0 U	NS	5.0 U	2.0 U	1.0 U	NS	130 U	200 U
Bromodichloromethane	l/an	0.2	1.0 U	1.00	SN	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Bromoform	l/an	-	1.0 U	1.0 U	NS	5.0 U	S.0 U	1.0 U	SN	130 U	200 U
Bromomethane	Van		1.0 U	1.0 U	NS	5.0 U	S.0 U	1.0 U	SN	130 U	200 U
Carbon di sulfide	l/gu	700	1.0 U	1.0 U	NS	S.0 U	N0.8	1.0 U	NS	130 U	200 U
Carbon tetrachloride	Ngu	S	1.0 U	0.40 J	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Chlorobenzene	l/gu	100	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	SN	130 U	200 U
Chloroethane	l/gu	-	U.0.U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Chloroform	l/gu	0.2	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Chloromethane	l/gu	1	1.0 U	1.0 U	NS	5.0 U	2.0 U	1.0 U	NS	130 U	200 U
cis-1.2-Dichloroethene	Ngu	70	1.0 U	1.0 U	NS	5.0 U	5.0 U	6.7	NS	130 U	3,000
cis-1,3-Dichloropropene	ηgη	-	1.0 U	1.0 U	SN	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Cyclohexane	l/gri	1	1.0 U	1.0 U	SN	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Dibromochloromethane	Иви	140	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Dichlorodifluoromethane	Ngu	1	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Ethylbenzene	hg4	700	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
(Sopropylbenzene (Cumene)	l/gμ	1	1.0 U	1.0 U	SN	S.0 U	S.0 U	1.0 U	NS	130 U	200 U
Methyl acetate	ИВИ	1	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Methyl-tert-butyl ether	l/gu	70	1.0 U	1.0 U	NS	5,0 U	5.0 U	1.0 U	NS	130 U	200 U
Methylcyclohexane	Ngu	1.9	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Methylene chloride	l/gu	2	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Styrene	l/gri	100	1.0.0	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Tetrachloroethene	Mad	S	1.0 U	13	NS	18	15	0.55 J	NS	130 U	200 U
Toluene	иgл	1,000	1.0 U	1.0.1	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
trans-1.2-Dichloroethene	Ngu	100	1.0 U	1.0 U	SN	5.0 U	5.0 U	6.8	NS	130 U	200 U
trans-1.3-Dichloropropene	Ngn		1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Trichloroethene	NgH	5	3.9	0.24 J	NS	110	96	4.0	NS	1,800	460
Trichlorofluoromethane	NgH	1	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	NS	130 U	200 U
Vinyl chloride	Иgи	2	1.0 U	1.0 U	NS	5.0 U	5.0 U	1.0 U	SN	130 U	52.3
Xylenes, John	l/SH	10,000	3.00	3.0 U	NS	15 U	15 U	3.0 U	NS	380 U	000 U

Nations

— Indicates there is no established streeting criteria for this compound.

Bold _ Indicates at detection of the noted compound.

Bold _ Indicates at detection of the note of compound.

| Highlighted result is above IEPA Class I groundwater standard.

| Indicated _ Indicates that the reporting limit is above Class I groundwater standard.

| IEPA _ Illinois Baronomental Protection Agency
| Class I Groundwater Standard _ 35 Illinois Administrative Code Part 742, Appendix B. Tay
| VICC. - Violatic regulation compounds.

istrative Code Part 742, Appendix B, Table E.

Table 3C
Groundwater Sample Results - February 2014
GE Morrison Facility
Morrison, Illinois

factorization.	Timite	IEPA Class I Groundwater Standard	GW-MW9-2014A	GW-MW10-2014A	GW-MW11-2014A	GW-MW11-LS-2014A	GW-MW12-2014A	GW-MW12-LS-2014A	GW-MW13-2014A	GW-MW13-LS-2014A
Councy councy coops	Common of the Co	D THE PARTY OF THE	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014
1 1 Trichlorouthons	1/0/1	200	1.0 U	1.0 U	1.00	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.1.2.2-Tetrachloroethane	Van	1	1.0 U	1,0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.1.3-Trichloro-1.2.2-trifluoroethane	l/an	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
.1.2-Trichloroethane	l/gri	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.1-Dichloroethane	l/gri	700	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.1-Dichloroethene	Man	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2 4-Trichlorohenzene	l/an	70	0.0.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Dibromo-3-chloropropage	l/gu	0.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Dibromoethane (EDB)	l/an	0.05	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Dichlombenzenn	Van	009	1.0 C	1.0 U	0.0.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Dichloroethane	Van	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Dichloropropane	1/6/1	5	1001	1.0 U	U.0.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2 Dichlorohannana	100		1101	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.7 Dishlambarana	1100	75	101	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2 Butanana (MEK)	110/1		20.5	5.0 U	1.9.1	1.0.1	0.65 J	0.80 J	0.75 J	5.0 U
Z-Dutanone (attack)	110/1		1105	S.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
A Mashed 2 Danton and MTBE	ng.		202	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	S.0 U	5.0 U
Acetons	1/8/1	6.300	3.9.1	4.4.3	15	7.4	3.3 J	5.1	5.0	4.3.3
Beneare	1/611	5	001	1.0 U	1.0 U	1.0 U	0.15 J	0.23 J	0.22 J	0.63.J
Bromodichloromethane	l/an	0.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	l/g/l	1	U.0.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	Lgu.	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon disulfide	l/gri	700	1.0 U	1.0 U	1.0 U	1.0 U	0.58 J	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	Lgu	8	1.0 U	J.0.U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	1/8/1	100	0.00	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.00
Chloroethane	l/gri	*	1.0 U	1.0 U	0.0.1	0.0.1	1.0 U	0.0.1	0.0.1	1.0 0
Chloroform	hg/l	0.2	707	0.21 J	1.0 U	707	7.07	7.07	007	0.19.3
Chloromethane	l/gri		1.0 U	1.0 U	1.0 U	0.0.1	0.0.1	0.0.1	00.1	0.0.
cis-1,2-Dichloroethene	l/gil	70	10	1.0 U	1.0 U	1.0 U	1.0 U	0.0.1	0.07	0.0.1
cis-1,3-Dichloropropene	lβπ	y-m	1,00	0.0.1	1.0 U	1.0 U	1.0 U	0.0.1	0.0.1	0.0.1
Cyclohexane	l/gri		1.0 U	1.0 U	1.0 U	1.0 U	0.0.1	0.0.1	0.0.1	1.00
Dibromochloromethane	Vβn	140	0.0.1	1.0 U	0.0.1	0.0.1	1.0 0	0.0.1	0.0.1	1.0 0
Dichlorodifluoromethane	l/gn	1	1.0 U	1.0 U	1.0 U	0.0.1	1.0 U	1.00	0.07	1.000
Ethylbenzene	l/gri	700	0.0.0	1.0 U	1.0 U	0.0.1	1.0.0	T.0.0	007	0.30 3
Isopropylbenzene (Cumene)	l/gri	3	0.0.1	1.0 U	1.0 U	1.0 U	0.0.1	0.0.1	0.0.	0.00
Methyl acetate	hg/l	3 3	1.0 U	0.0.1	1.00	0.0.1	00.1	1.0 U	1.0.0	0.0.1
Methyl-tert-butyl ether	Vari	70	1.0 U	0.0.1	7.07	0.0.1	0.0.1	0.0.1	00.1	1.00
Methylcyclohexane	hg/l		0.0.1	1.0 U	1.0 U	0.0.1	1.0 U	0.0.1	007	1.0 U
Methylene chloride	l/gri	5	1.0 U	1.0 U	1.0 U	0.07	0.0.1	1.0 0.	0.0.1	0.0.1
Styrene	l/gri	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.01	0.0.1
Tetrachloroethene	hg/l	9	1.0 U	0.26 J	0.0.1	0.0.1	1.0 U	0.0.1	1.00	0.0.0
Toluene	l/grl	1,000	1.0 0	1.0 U	1.0 C	7.0 0	D.0.1	0.25.0	0.000	6.6
trans-1,2-Dichloroethene	l/gn	100	1.00	0.0.1	200	0.07	1.0 U	1.00	0.00	0.0.1
trans-1,3-Dichloropropene	1/Sn		1.0 U	0.0.1	0.0.1	0.0.1	0.0.1	0.0.1	0.0.1	0 :
Trichloroethene	l/grl	2	0.0.1	0.0.1	0.01	0.0.1	0.0.1	0.07	0.01	1.0 0
Trichlorofluoromethane	l/gn	-	1.0 U	0.0.1	707	00.1	0.0.1	0.0.1	0.07	0 1:0
Vinyl chloride	l/gri	2	2.7	1.0 U	007	0.0.1	1.0.0	1.0 U	0.0.1	1.00
Xylenes, Total	hg/l	10,000	9.0 U	5.0 U	20.6	5.0 U	5.0 U	3.0 U	200	U.9.1.J

Oualifiers:

J - Estimated concentration above the adjust

U - Compound not detected.

X/- Data qualifier added by laboratory.

IEPA - Illinois Environmental Protection Agency
Class J Groundwater Standard - 25 Illinois Administrative Code Part 742, Appendix B., Table E.

JEPMSBP7V
PX1011409L011499L011490 - GE MorrisonIA D Exceution (Project Deliverables))4.12 FSI Addendum/Tables/Table 3C_MW Results_Febi 4WW VOC Results_Febi

Table 3C
Groundwater Sample Results - February 2014
GE Morrison Facility
Morrison, Illinois

Compound	Units	IEPA Class I Groundwater Standard	GW-G101D-2014A	GW-G104S-2014A	GW-G104D-2014A	GW-G105S-2014A	GW-G105D-2014A	(Duplicate of GW-G105D-2014A)
70Cs (SW846 8260B)			2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014	2/13/2014
1 -Trichloroethane	1/50	200	1.0 U	1.0 U	1.0 U	2.7	5.0 U	2.0 U
. 1.2.2-Tetrachloroethane	l/gn	1	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
1 2-Trichloro-1 2 2-trifluoroethane	l/gn	-	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
1.2-Trichloroethane	l/an	S	1.0 U	1.0 U	1,00	1.0 U	5.0 U	5.0 U
I-Dichlorvethane	l/gn	700	1.0 U	1.0 U	1.0 U	1.0	52	50
1-Dichloroethene	l/au	7	1.0 U	1.0 U	1.00	U.0.1	100	06
2 4-Trichlerohenzene	l/an	70	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
2.Dibramo.3.chloronronane	l/on	0.2	1.0 U	1.0 U	1.0 U	1.0 U	S.0 U	5.0 U
2 Dibomosthana (RDR)	Van	50.0	1.00	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
2 Dicklorchanzene	110/1	009	1.0 U	1.0 U	1.0 U	1.0 U	S.0 U	5.0 U
2. Dichloroethane	Voll	v	1.0 U	1.0 U	1.0 U	1.0 U	4.1.3	4.3.3
2 Diemonomono	1/0/1	L/C	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
2 Dichlorobanzana	Voil	1	1.0 U	1.0 U	1.0 U	1.0 U	S.0 U	5.0 U
A Diellorbenzene	110/1	75	1101	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Puternal MED	1000	2 1	1.5.1	1.9.1	1.2.1	1.1.1	25 U	25 U
Targette (mark)	1011	1	1105	5.0 U	5.0 U	5.0 U	25 U	25 U
-tickatolic Destroyer (MTRK)	1001)	5.0 U	5.0 U	5.0 U	5.0 U	25 U	25 U
Acetone	[/3n	6,300	0.0	12	6.8	5.8	25 U	25 U
Senzene	l/sn	5	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Sromodichloromethane	1/211	0.2	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Sromoform	l/gu	-	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Sromomethane	l/gn	1	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Carbon disulfide	1/311	700	1.0 U	0.0.1	1.0 U	1.0 U	2.0 U	5.0 U
Carbon tetrachloride	l/gu	5	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Thlorobenzene	l/gri	100	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Chloroethane	Ngri	1	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Chloroform	l/gri	0.2	1.0 U	7.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Chloromethane	l/gu		1.0.0	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	l/gu	70	1.1	1.0 U	1.0 U	1.0 U	14	13
cis-1,3-Dichloropropene	l/gu	_	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
yclohexane	l/gn	1	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Dibromochloromethane	l/gri	140	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	Ngu	-	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Ethylbenzene	l/gn	700	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
(sopropylbenzene (Cumene)	l/gu	L	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Methyl acetate	l/gri	ı	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Wethyl-tert-butyl ether	l/gu	20	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	5.0 U
Methylcyclohexane	l/gn	1	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Methylene chloride	l/gri	5	1.0 U	1.0.0	1.0 U	1,0 U	3.5 J	5.0 U
Styrene	l/gri	100	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
etrachloroethene	l/gu	5	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Coluene	l/gri	1,000	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
rans-1.2-Dichloroethene	l/gri	100	0.38 J	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
trans-1,3-Dichloropropene	l/gri	-	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Trichloroethene	V8H	50	0.20 J	1.0 U	0.57 J	0.60 J	23	23
Prichlorofluoromethane	l/gu	1	1,01	1.0 U	1.0 U	1.0 U	5.0 U	5.0 U
Vinyl chloride	l/gri	2	0.48 J	1.0 U	1.0 U	1.0 U	8.7	7.7
Villaman Total	1/371	10,000	3.0 U	3.0 U	3.0 U	3.0 U	15 U	15 U

Exhibit 9

MWH's Letter Responding to the IEPA's Comments on the FSI Addendum Report (dated October 24, 2014)

BUILDING A BETTER WORLD

October 22, 2014

Mr. Lewis Streeter 319 Great Oaks Blvd Albany, NY 12203

Re: Response to IEPA Comments

Focused Site Investigation Addendum Report Former GE Morrison Facility, Morrison, Illinois

Dear Mr. Streeter:

The Focused Site Investigation (FSI) Addendum Report (MWH, 2014) was submitted to the Illinois Environmental Protection Agency (IEPA) on May 15, 2014. In a letter dated August 14, 2014, the IEPA provided review comments on the FSI Addendum, and requested a response to those comments. The following are responses to those comments.

IEPA Comment 1: Pages 1-1, 1-2 (Executive Summary), Page 5-3, Page 5-8 and Page 6-1 (Conclusion): A statement is needed regarding a qualification of the Conceptual Site Model (CSM). The report states that, according to the CSM, Rock Creek is a groundwater divide and discharge point for contaminants from the GE facility. Although the potentiometric data from area monitoring wells indicated the prevailing groundwater gradient is toward Rock Creek, the fact that trichloroethylene was detected in the south golf course irrigation well indicates that contaminants can migrate beyond Rock Creek under the influence of pumping at the well. A discussion regarding the irrigation well and its influence needs to be included with discussions of the CSM and conclusions at the site to complete the record.

<u>IEPA Comment 3:</u> Page 5-3 (Conceptual Site Model): A clarification is needed regarding the flow of groundwater and contaminants beneath Rock Creek. Figure 5 and physical laws indicate that the groundwater cannot continue to flow into the sand and gravel 100 feet below the creek and become "immobile" there in a "zone of stagnation." The groundwater is not compressible, and must flow out of the sand and gravel as any open system must function. If the groundwater does not discharge to Rock Creek, it must flow downstream beneath the creek, described as a potential action.

Response to IEPA Comments 1 and 3: IEPA's comments raise a number of items regarding the Conceptual Site Model (CSM) for the site and the need for further supporting information on those items. In order to provide that supporting information, the underlying physical, hydraulic, and chemical data have been summarized in this response to comments. The following items are addressed in the response below:

- Further explanation of Rock Creek's role as a groundwater divide.
- Explanation of the zone of stagnation.

- Clarification of the distribution of volatile organic compound (VOC) concentrations in the groundwater, particularly in the zone of stagnation.
- Quantification of the potential groundwater flow zone along the axis of Rock Creek, 100 feet below the creek.
- Explanation for the trichloroethene (TCE) detection in the south irrigation well.

Hydraulic Conductivity Values for Site Hydrostratigraphic Units

Aquifer testing was not performed as part of the FSI. However, GeoTrans, Inc. (GeoTrans) performed aquifer testing and groundwater modeling as part of a natural attenuation analysis study conducted at the site. To update the CSM for the FSI, MWH Americas, Inc. (MWH) used the hydraulic conductivities (K-values) reported in the GeoTrans, Inc. Natural Attenuation Analysis and Groundwater Modeling Report (GeoTrans, 2001).

GeoTrans identified four hydrostratigraphic units in their report, and derived K-values for the units by performing slug tests and single well pumping tests. The results of their analysis for each aquifer test are shown on Table 3-2 and an average K-value for each hydrostratigraphic unit is shown on page 25. Those results are presented below.

Table 1. K-Values for Hydrostratigraphic Units

Hydr	ostratigraphic Unit	Description	Hydraulic Conductivity
1	Upland Deposits	Fine-grained Alluvium	2.10E-05 cm/sec
2	Lowland Deposits/Transitional Zone	Sand, Gravel, Weathered Bedrock	1.30E-03 cm/sec
3	Upper Dolomite	Weathered Bedrock	3.90E-04 cm/sec
4	Lower Dolomite	Competent Bedrock	5.30E-07 cm/sec

Note: cm/sec = centimeters per second

In the process of completing their evaluation of the groundwater flow regime, GeoTrans implemented and calibrated a numerical flow and transport model. Through the calibration process, GeoTrans derived modified estimates of the K-values believed to be reasonable for each hydrostratigraphic unit. These revised K-values were reported in Table 4-2 and on Figure 4-3 of Appendix G of their report. Note that GeoTrans reported K-values in units of cm/sec in the main report and in ft/day in the model documentation. For clarity, both units are listed in the following table.

Table 2. Calibrated K-Values for GeoTrans Model

Ну	drostratigraphic Unit	Description		Hydra	ulic Conduct	tivity
1	Upland Till Deposits	Fine-grained Alluvium	2	ft/day	7.1E-04	cm/sec
2	Lowland Channel Deposits	Sand and Gravel	7	ft/day	2.5E-03	cm/sec
3	Upper Dolomite	Weathered Bedrock	14	ft/day	4.9E-03	cm/sec
4	Lower Dolomite	Competent Bedrock	0.085	ft/day	3.0E-05	cm/sec

Note: ft/day = feet per day

GeoTrans defined four hydrostratigraphic units in their report and groundwater model. MWH has refined the definitions of the geologic column and redefined the hydrostratigraphic units present at the site on the basis of several 100-foot deep boreholes and monitoring wells installed during the FSI. Table 3 is a tabulation that provides a correlation between the stratigraphic column defined by GeoTrans and the stratigraphic column refinement in the current CSM.

Table 3. Current Geologic Description for CSM

Geologic Description	GeoTi	ans Model	MWH	Conceptual Site Model
-	Unit	Layer Name	Unit	Layer Name
Fine-grained Alluvium Glacial Till	1	Upland Deposits	1	Surficial Alluvium
Sand			2	Sand
Sand and Gravel	2	Lowland Channel Deposits Transitional Zone	3	Sand & Gravel
Weathered Bedrock	3	Upper Dolomite	4	Weathered Bedrock
Competent Bedrock	4	Lower Dolomite		

Based upon the borehole and monitoring well installation work during the FSI, the <u>Weathered Bedrock</u> layer and overlying <u>Sand & Gravel</u> act as a single hydrostratigraphic unit at the site and so throughout the remainder of this response-to-comment document, the term "Bedrock Interface Zone" refers to them as a single hydrostratigraphic unit.

Calculation of Horizontal Gradient

The horizontal hydraulic gradient between the GE facility and Rock Creek drives the groundwater and migration of VOCs at the site. The gradient was calculated using groundwater elevations collected at monitoring wells MW4-UD near the building and MW8-LS near Rock Creek. The following is a tabulation of water elevations and calculated horizontal gradients for six sets of water level measurements during the FSI.

Table 4. Groundwater Gradient Calculation

Date	High (ft amsl)	Low (ft amsl)	dh (ft)	ds (ft)	grad h = dh/ds
1/12/2012	625.16	623.07	2.09	1400	0.001492857
8/08/2012	622.94	621.01	1.93	1400	0.001378571
5/13/2013	625.81	623.52	2.29	1400	0.001635714
9/04/2013	622.75	620.74	2.01	1400	0.001435714
1/30/2014	622.68	620.81	1.87	1400	0.001335714
4/08/2014	623.73	621.88	1.85	1400	0.001321429
				Average	0.001433333

Notes:

amsl = above mean sea level

dh = difference in potentiometric surface elevation between MW4-UD and MW8-LS

ds = distance measured parallel to grad h

grad h = gradient calculated between MW4-UD (high) and MW8-LS (low)

As shown above, the average gradient (i) between the GE facility and Rock Creek is 0.0014 ft/ft. This value is used to calculate migration rates and groundwater flux in the following sections.

Surface Water and Groundwater Elevations Adjacent to Rock Creek

Rock Creek is a "sink", the zone of lowest groundwater elevation and potentiometric pressure in the groundwater basin. Table 5 is a tabulation of the groundwater elevation measured at the MW8-LS/MW9 well nest and the surface water elevations collected simultaneously nearby in Rock Creek during 2012, 2013 and 2014.

Table 5. Surface Water and Groundwater Elevations

Date	Surface Water Rock Creek Near MW8-LS	Water Table Well MW9	Deep Well MW8-LS
1/12/2012	NM	NA	623.07
8/8/2012	NM	615.97	621.01
5/13/2013	615.60	618.87	623.52
9/4/2013	614.58	616.60	620.74
1/30/2014	NM	616.40	620.81
4/8/2014	615.14	618.28	621.88

Note:

Mean sea level datum used for water elevations

NA = not available, MW9 did not exist

NM = not measured

These water levels provide the basic documentation of the existence of the divide along the axis of Rock Creek.

Groundwater Elevations in Deep Sand and Gravel Aquifer along Rock Creek

Groundwater flow converges toward Rock Creek from both the north and south side of the creek. The majority of the groundwater flow occurs in the Bedrock Interface Zone. This was called the "transition unit" in the GeoTrans report.

The upper boundary of the Bedrock Interface Zone is 60 to 70 feet below Rock Creek. The layers below the creek, but above the Bedrock Interface Zone, consist of finer-grained deposits with lower permeability. As stated in the FSI Addendum, these deposits inhibit (but do not eliminate) upward migration to discharge into Rock Creek.

Groundwater also flows horizontally to the east in the Bedrock Interface Zone along the axis of the creek, 60-100 feet below the creek bottom. The flow is driven by a small gradient, which is documented by the difference in groundwater elevations between monitoring wells MW7-LS and MW8-LS. The groundwater elevations tabulated below are used to calculate the gradient along the axis of the creek, in the Bedrock Interface Zone.

Table 6. Groundwater Gradient along Axis of Rock Creek

Date	MW7-LS (ft amsl)	MW8-LS (ft amsl)	dh (ft)	ds (ft)	grad h = dh/ds
1/12/2012	623.12	623.07	0.05	884	0.000057
8/8/2012	621.09	621.01	0.08	884	0.000090
1/30/2014	620.90	620.81	0.09	884	0.00010
4/8/2014	622.05	621.88	0.17	884	0.00019
	AND ARREST TO A STATE OF THE PARTY OF THE PA		The second secon	AVERAGE	0.00011

Note: Gradient calculated between monitoring wells MW7-LS (high) and MW8-LS (low)

As shown in Table 6, the average gradient in the Bedrock Interface Zone along the axis of Rock Creek is 0.0011 ft/ft.

Calculation of Average Groundwater Seepage Velocity in Each Stratigraphic Unit

Table 7 lists the variables needed to calculate groundwater seepage velocity in each of the four hydrostratigraphic units. The top half uses the K-values listed on page 25 of the 2001 GeoTrans Report. The bottom half uses the modified K-values derived from the GeoTrans model-calibration.

Table 7. Groundwater Seepage Velocity Calculation

		i	К		N				
Flow	Hydrostratigraphic	Gradient	Hydraulic Co	onductivity	Porosity	Seepage Velocity		y (V)	
Zone	Unit	ft/ft	cm/sec	ft/day	ft/ft	cm/sec	ft/day	ft/year	
1	Surficial Alluvium ⁽¹⁾	0.0014	2.1E-05	6.0E-02	0.30	9.8E-08	2.8E-04	0.10	
2	Sand ⁽²⁾	0.0014	1.5E-04	4.3E-01	0.25	8.4E-07	2.4E-03	0.87	
3	Sand & Gravel	0.0014	1.3E-03	3.7E+00	0.20	9.1E-06	2.6E-02	9.4	
4	Weathered Bedrock	0.0014	3.9E-04	1.1E+00	0.20	2.7E-06	7.7E-03	2.8	
Flow	Hydrostratigraphic	Gradient	Hydraulic Co	Conductivity Porosity		Seep	age Velocity	ge Velocity (V)	
Zone	Unit	ft/ft	cm/sec	ft/day	ft/ft	cm/sec	ft/day	ft/year	
1	Surficial Alluvium ⁽¹⁾	0.0014	7.1E-04	2.0E+00	0.30	3.3E-06	9.4E-03	3	
2	Sand ⁽²⁾	0.0014	1.3E-03	3.8E+00	0.25	7.5E-06	2.1E-02	8	
3	Sand & Gravel	0.0014	2.5E-03	7.1E+00	0.20	1.8E-05	5.0E-02	18	
4	Weathered Bedrock	0.0014	4.9E-03	1.4E+01	0.20	3.4E-05	9.7E-02	36	

Notes:

V = Ki/n

Surficial Alluvium⁽¹⁾ - GeoTrans used the different terms including upland deposits, till, and alluvium in the 2001 Report. MWH elects to use the simplified term "Surficial Alluvium" to reference the upper finegrained deposits.

Sand⁽²⁾ - GeoTrans did not identify or conduct slug tests on the sand unit. The value provide in these tables is the geometric mean between the surficial alluvium and the sand & gravel units.

The GeoTrans model-calibration-derived K-values provide a better match to the data, reflecting the existence of VOCs in the aquifer near the creek. Based on the distance to the creek (1,400 feet) and the fact that solvent usage began 50-60 years ago, the K-values in the range of 30 ft/year from the model-calibration in the lower tabulation (shaded) are supported by the data collected from MW7-LS and MW8-LS, are the most representative of the site, and are used in the refinement of the CSM.

Calculation of Groundwater Flow Volume from GE Facility to Rock Creek

The volume of groundwater migrating from the GE facility toward Rock Creek is calculated using the physical and hydraulic characteristics detailed in the previous tables. The total volume of groundwater flow is calculated as a volume per unit of time (e.g. gallons per minute or cubic feet per second). One of the objectives for the CSM is to compare the volume of groundwater seeping into Rock Creek with the total volume of surface water flowing along the creek.

The volume of groundwater flow seeping into Rock Creek is proportional to the length of the reach over which the seepage occurs. Groundwater flows from the GE facility, south to Rock Creek. The GE facility extends approximately 1,000 feet west to east. To provide a basis for comparing groundwater flow volume to surface water flow volume, groundwater flow is calculated through a 1,000 foot wide flow path between the facility and the creek.

In the following table, the discharge rate is standardized to the units of cubic feet per day, a unit that will also be used in calculating stream discharge.

Table 8. Calculation of Groundwater Flow Volume into Rock Creek

Flow		W Width (ft)	T (b) Thickness (ft)	i Gradient (ft/ft)	Hydraulic C	Q Flux	
Zone	Hydrostratigraphic Unit				cm/sec	ft/day	ft ³ /day
1	Surficial Alluvium	1,000	40	0.0014	7.1E-04	2	112
2	Intermediate Sand	1,000	30	0.0014	1.3E-03	3.8	160
3	Sand & Gravel	1,000	30	0.0014	2.5E-03	7.1	298
4	Weathered Bedrock	1,000	20	0.0014	4.9E-03	14	392
	Total thickness of groundwate	120	discharging	dwater volume to Rock Creek L,000 foot cree	from north	962	

Notes:

The letter commonly used for the thickness of a transmissive zone in an aguifer is "b".

Q = KiA

ft³/day = cubic feet per day

Q = discharge flux

Stream Discharge Record for Rock Creek Collected by USGS

Exhibit A is a listing of over 13 years of stream flow data collected by the United States Geologic Survey (USGS) on Rock Creek, less than a mile downstream from the study area. The figure attached to the table shows the location of the gauging station with respect to the study area. USGS recorded daily stream discharge in Rock Creek from April 1940 to September 1944 and from October 1977 until September 1986. The full data set consists of 4,200 data points. The full data listing is available from MWH by request.

Basic statistics of the data are listed in the yellow shaded area at the top of the table and a flow frequency histogram is plotted to the right. Relevant statistical measures for the data are:

Number of Data Points	4,200
Average Flow	120 cfs
Median Flow	75 cfs
Mode Flow Value	50 cfs
Standard Deviation	174
Minimum Flow	7.4 cfs
Maximum Flow	2060 cfs

Note: cfs = cubic feet per second

GeoTrans conducted five stream flow gauging events at four stations along Rock Creek in 1999. The results of the gauging events are provided in Table 2-6 of the GeoTrans Report. GeoTrans recorded similar Rock Creek stream discharge rates (between 41 and 358 cfs). The USGS gauging station is downstream of the City of Morrison Waste Water Treatment Plant; however, GeoTrans staff gage locations were along Rock Creek down gradient from the GE facility (Figure 1-2 of the GeoTrans Report). GeoTrans gauging results are consistent with the USGS database.

The histogram plot of the data on the right side of Exhibit A shows an approximately normal distribution, skewed to flow rates higher than the average. The <u>mode</u> is the discharge rate that occurs most often in the data set, and so it is perhaps a better representation of the expected discharge down the creek on a daily basis than the calculated <u>average</u> flow. The average flow rate is skewed to 120 cfs, but that average represents the fact that very high surface water flows occur for short periods of time, after major precipitation events. 120 cfs is not the most common discharge volume along the creek.

The mode, the Rock Creek discharge most often detected during 13.5 years of gauging is 50 cfs. The following calculation shows that 50 cfs is equivalent to more than 4 million cubic feet of water per day, flowing past the site on a typical day.

50 cfs x 60 seconds/minute x 60 minutes/hour x 24 hours per day = $4,320,000 \text{ ft}^3/\text{day}$

The ratio of groundwater discharging into Rock Creek to the total surface water discharge along Rock Creek can be calculated by dividing the groundwater discharging to the creek by the surface water discharge along the creek.

$$962 \text{ ft}^3/\text{day} \div 4{,}320{,}000 \text{ ft}^3/\text{day} = 0.00022$$

By inverting this ratio of groundwater to surface water discharge volumes, we can estimate that 1 cubic foot of groundwater enters the creek, along the 1000 foot long stretch of the creek downhill from the GE facility, for every 4,500 cubic feet of water that flows along the creek past the GE facility.

Calculation of Groundwater Seepage Velocity in the Bedrock Interface Zone

The gradient along the west-east axis of Rock Creek was calculated in Table 6 above. The calculation shows a slight gradient, 0.00011 ft/ft, in the Bedrock Interface Zone in the direction of stream flow (east). Using this gradient value, the groundwater seepage velocity is calculated below for both of the units that make up the Bedrock Interface Zone.

Table 9. Groundwater Seepage Velocity Calculation in Transition Zone along Axis of Rock Creek

Flow	Hydrostratigraphic	i Gradient	Hyraulic Co	nductivity	N Porosity	Seepage Velocit		locity (V)	
Zone	Unit	ft/ft	cm/sec	ft/day	ft/ft	cm/sec	ft/day	ft/year	
3	Sand & Gravel	0.00011	2.5E-03	7.1E+00	0.20	1.4E-06	3.9E-03	1.4	
4	Weathered Bedrock	0.00011	4.9E-03	1.4E+01	0.20	2.7E-06	7.6E-03	2.8	

Calculation of Groundwater Flow Volume in the Bedrock Interface Zone

By calculating the cross sectional area through which the groundwater flows, the same gradient and K-values can be used to estimate the volume of water potentially migrating along the Bedrock Interface Zone parallel to the creek flow (Table 10).

Table 10. Calculation of Groundwater Flow Volume through Bedrock Interface Zone

Flow		W ⁽¹⁾ Width	T (b) Thickness	i Gradient	K Hydraulic Conductivity		Q Flux
Zone	Hydrostratigraphic Unit	feet	feet	ft/ft	cm/sec	ft/day	ft ³ /day
3	Sand & Gravel	100	30	0.00011	2.5E-03	7	2.3
4	Weathered Bedrock	100	20	0.00011	4.9E-03	14	3.1
	Total Thickness of groundwate	r flow zone	50	transition z	ndwater volun one dischargi m along axis o	5.4	

Notes:

 $W^{(1)}$ = The width of the flow zone has been arbitrarily defined as 100 feet. If the total width of the zone is 50 feet, the total discharge would be decreased by 50%. If the total width of the zone is 200 feet, the total discharge would be doubled.

VOCs Detected in Monitoring Wells located near Rock Creek down gradient from GE Facility.

The FSI Report and the FSI Addendum showed the highest VOC concentrations in groundwater are detected in monitoring well MW8-LS, which is screened in the Bedrock Interface Zone beneath Rock Creek. The following table was developed to summarize the VOCs detected in monitoring wells directly down gradient from the GE facility, adjacent to Rock Creek. Monitoring well MW9 is screened in the upper water table zone and MW7-LS and MW8-LS are screened in the Bedrock Interface Zone. Monitoring well locations are shown on Exhibit B.

Table 11 lists the detected concentrations of nine chlorinated VOCs during the five sampling events between January 2012 and February 2014 at MW7-LS, MW8-LS, and MW9.

Q = KiA, where $A = W \times b$

Table 11. Groundwater Sample Results near Rock Creek

Monitoring	Tier 1	C	Date							
Well	GRO	Compound	1/25/2012	8/23/2012	6/11/2013	9/25/2013	2/13/2014			
		T		T	T		I			
	5	PCE	ND	ND	NS	NS	ND			
	5	TCE	480	2,700	NS	NS	1,800			
	7	1,1-DCE	83	200	NS	NS	110			
	70	cis-1,2-DCE	4	ND	NS	NS	ND			
MW7-LS	100	trans-1,2-DCE	ND	ND	NS	NS	ND			
	2	VC	ND	ND	NS	NS	ND			
	200	1,1,1-TCA	56	220	NS	NS	110			
	5	1,1,2-TCA	ND	ND	NS	NS	ND			
	700	1,1-DCA	8.4	ND	NS	NS	ND			
		_								
	5	PCE	ND	ND	ND	ND	ND			
	55	TCE	4,800	2,000	26	180	460			
	7	1,1-DCE	150	120	81	71	92			
	70	cis-1,2-DCE	42	1,400	2300	1,400	3,000			
MW8-LS	100	trans-1,2-DCE	ND	ND	7.9	ND	ND			
	2	VC	ND	ND	ND	ND	52			
	200	1,1,1-TCA	ND	ND	ND	ND	ND			
	5	1,1,2-TCA	ND	ND	ND	ND	ND			
	700	1,1-DCA	71	42	29	ND	38			
		1	1							
	5	PCE	NA	ND	ND	ND	ND			
	5	TCE	NA	ND	ND	ND	ND			
	7	1,1-DCE	NA	ND	ND	ND	ND			
	70	cis-1,2-DCE	NA	4.4	1.5	2	10			
MW9	100	trans-1,2-DCE	NA	ND	ND	ND	ND			
	2	VC	NA	ND	ND	ND	2.7			
	200	1,1,1-TCA	NA	ND	ND	ND	ND			
	5	1,1,2-TCA	NA	ND	ND	ND	ND			
	700	1,1-DCA	NA	ND	ND	ND	ND			

Notes:

All concentrations reported in micrograms per liter ($\mu g/L$)

1,1,1-TCA = 1,1,1-trichloroethane

1,1,2-TCA =1,1,2-trichloroethane

1,1-DCA = 1,1-dichloroethane

1,1-DCE = 1,1-dichloroethene

Bold = detected compound, compounds detected above the GRO are shaded

cis-1.2-DCE = cis-1,2-dichloroethene

GRO = groundwater remediation objective

NA = not available, MW9 did not exist prior to August 2012 sampling event

ND = not detected

NS = not sampled

PCE = tetrachloroethane

trans-1,2-DCE = trans-1,2-dichloroethene

vc = vinyl chloride

Additional Detail for the CSM

A CSM was developed for the FSI Addendum to describe the groundwater flow regime in vicinity of the GE facility. That original CSM showed groundwater recharge areas on the uplands and the primary discharge area along Rock Creek. This is a typical groundwater flow regime for the temperate Midwest climate. Further information and detail in support of the CSM is provided below.

Exhibit B. Potentiometric Plot of the Bedrock Interface Zone

Exhibit B is a map view of the GE facility on the west side of Morrison. Water levels collected on April 8, 2014 were used to produce a potentiometric plot of the water levels in the Bedrock Interface Zone. As shown by the contour lines, water levels decline from about 623 feet amsl near the GE facility to 622 feet amsl near the north side of Rock Creek in the Bedrock Interface Zone.

The potentiometric pattern is similar on the south side of Rock Creek although the gradient is steeper. The blue arrows show the horizontal groundwater flow direction driven by the potentiometric distribution.

Water level measurements were collected on five other dates during the FSI. Potentiometric plots from those events consistently show that water levels are higher near the GE facility and lower at Rock Creek; conditions are the same on the south side of the creek. Surface water elevations were also measured in Rock Creek during three of those water level measurement events. The water elevations in Rock Creek and at nearby well nest MW8-LS/MW9 for those three dates are shown on Exhibit B. The following observations are made:

- The elevation of Rock Creek was approximately 615 feet amsl on all three dates.
- The groundwater elevation at water table well, MW9, was two to three feet higher than the creek level, indicating that the vertical groundwater gradient is upward and toward the creek.
- Groundwater elevations measured at MW8-LS (deep well) are consistently at least three feet higher than the water table and five feet higher than the creek elevation.
- Monitoring wells MW12 and MW13 on the south side of Rock Creek document a similar gradient toward the creek from the south side.

The groundwater elevations measured at the site document a strong inward gradient from both sides of the creek and an upward gradient into the creek from the Bedrock Interface Zone. These water elevations confirm that Rock Creek creates a divide.

Exhibit C. Potentiometric Plot on Cross Section

Exhibit C is a cross sectional view aligned north to south along the primary horizontal groundwater flow path. The hydraulic gradients in the vertical dimension are illustrated by plotting and contouring the surface water and groundwater levels on the cross sectional view.

Arrows drawn perpendicularly to contour lines show the vertical gradients that drive groundwater flow on both sides of Rock Creek. Exhibit B together with Exhibit C, confirm that Rock Creek creates a divide, with gradients driving groundwater flow from both sides and beneath Rock Creek, up into the creek.

Exhibit D. Geologic Cross Section

Hydraulic gradients drive groundwater from high potentiometric areas (high water level areas) toward areas of lower potentiometric pressure (as indicated by lower water levels). However the actual pathway followed by groundwater is controlled by the site stratigraphy. Groundwater flow tends to follow the paths of least resistance. More of the total groundwater flowing between high potential areas and low potential areas will flow through the highly permeable zones; less through the zones with low permeability.

Exhibit D is a geologic cross section, aligned along the same north to south flow path as Exhibit C. It shows that the stratigraphic units with the highest K-values, (the zones least resistant to groundwater flow) are the two layers that make up the Bedrock Interface Zone. These are layers 3 and 4, the sand and gravel and the weathered bedrock layers. The FSI Report provides an explanation of the origin of the stratigraphic succession.

Tables 1 and 2 include listings of the estimated hydraulic conductivity of each of the hydrostratigraphic units. Table 7 is arranged to provide the variables to calculate average groundwater seepage velocity in each hydrostratigraphic unit using the Darcy Equation. Using the updated K-values on the bottom half of Table 7, it is calculated that:

- Average groundwater seepage rate in the water table zone, in the surficial alluvium is on the order of 3 feet per year.
- Average groundwater seepage velocity in Layer 2 is 8 feet per year.
- Following the path of least resistance, groundwater seepage velocity is on the order of 20 to 40 feet per year in the Bedrock Interface Zone (Layers 3 and 4).

Table 8 is a tabulation of the variables used to calculate the volumetric flux of groundwater from the GE facility to Rock Creek. The contour lines on Exhibit C show the hydraulic gradient, which drives groundwater toward Rock Creek. The total groundwater flux depends upon the cross sectional area through which the ground water is flowing. The red lines on Exhibit B delineate a 1,000 foot wide flow path across an area where the water bearing units add up to a 120 foot thickness. Therefore, groundwater will flow through a cross section 120 feet x 1000 feet, or an area of 120,000 ft² between the GE facility and Rock Creek.

The final row in Table 8 lists the calculated volumetric flux of groundwater through a 1,000 foot wide flow path across all four stratigraphic units. While the spreadsheet calculation provides a flow volume estimated to three significant figures, in fact, it is unrealistic to calculate a flow volume to any more than a single significant figure. Therefore, it is acceptable to say that the flux from the facility to the creek is approximately 1,000 cubic feet per day through a 1,000-foot wide flow path from the north side.

Since Rock Creek creates a groundwater divide, we can conclude that an equal volume, (1,000 cubic feet per day) discharges to the creek from the south side along the same 1,000-foot stretch of the creek.

The blue arrows sketched on Exhibits A, C, and D converge toward the creek. The gradients coming toward the creek are equal and opposite and so they cancel each other out and there is a zone of zero horizontal gradient (in the north to south direction) in the Bedrock Interface Zone directly beneath the creek. Since the groundwater is incompressible at the pressures in this aquifer, the water seeks an alternate flow path. It follows the path of least resistance, which is upward to discharge into the creek.

While the north to south gradient is zero in the Bedrock Interface Zone, water level measurements at monitoring wells MW7-LS and MW8-LS document the existence of a slight gradient oriented west to east, along the axis of the creek. Water levels in MW8-LS are consistently slightly lower than in MW7-LS, which is located 900 feet upstream from MW8-LS.

The water levels collected between MW7-LS and MW8-LS are listed above on Table 6. The table also includes the calculated horizontal gradient between these two wells, which represents the gradient downstream along the axis of Rock Creek in the Bedrock Interface Zone. The average gradient is i = 0.00011 which is approximately 10 times less than the gradient toward the creek (i = 0.0014). Darcy's equation is used in Table 9 to derive the estimated groundwater flow velocity and in Table 10 to derive the groundwater flow volume west to east 100 feet beneath Rock Creek. The estimated flow volume in this zone is approximately five cubic feet per day , miniscule in comparison to the 2,000 cubic feet of groundwater (1,000 feet from each side) discharging upward into Rock Creek each day.

Mass Balance: Groundwater and Surface Water

The following is a Summary of the Groundwater / Surface Water Mass Balance from the calculations in the previous sections.

Component of Discharge (Q)	Discharge Rate	See Calculation
Typical Daily Surface Water Flow along Rock Creek past the GE Facility	4,000,000 ft ³ /day	Page 7
Groundwater Seepage into Rock Creek from both sides, along a 1,000 foot reach of the creek	2,000 ft ³ /day	Table 8
Groundwater flow horizontally along the axis of Rock Creek in the Bedrock Interface Zone	5 ft³/day	Table 10

Note: Discharge rates rounded to one significant figure

The following relationships can be calculated from these values.

- 1 cubic foot of groundwater enters the creek along the 1,000-foot long stretch of Rock Creek downhill from the GE facility for every 4,500 cubic feet of water that flows in the creek.
- 1 cubic foot of groundwater migrates east per day in the Bedrock Interface Zone, for every 400 cubic feet of water that discharges upward into Rock Creek each day (along the 1,000 foot stretch of the creek).

Exhibit E. Conceptual Site Model (Revised)

Exhibit E is a qualitative representation of the groundwater flow regime in the vicinity of the site. The following observations are made of the revised CSM.

- The source of groundwater is precipitation that falls within the Rock Creek basin.
- Primary groundwater recharge occurs in the upland areas.
- Rock Creek, which is incised below the water table, is the primary groundwater discharge area.
- Groundwater flows from the uplands on both sides of Rock Creek towards discharge at the creek through multiple pathways.
- Approximately 70 percent of the groundwater (690 out of 962 cubic feet per day from Table 8) follows the deep pathway along the Bedrock Interface Zone.
- Groundwater converges towards Rock Creek from both the north and south. Colliding groundwater pathways zero out the horizontal gradient in the Bedrock Interface Zone 60-100 feet below the creek.
- Since water discharges to Rock Creek, water pressure is reduced at the top of the aquifer, and the primary gradient is upward near Rock Creek. The horizontal groundwater flow paths curve upward as they near the creek.
- The potentiometric pressures are equal and opposite from the north and south side of the creek, and so the blue cylinder is a zone of essential zero gradient in the north/south direction.
- Where there is essentially no gradient, there is no significant driving force to move the groundwater. Therefore groundwater in this zone remains largely stationary, or stagnant.
- The only significant gradient in the cylindrical zone is upward, towards discharge into Rock Creek.
- However, the only pathway to discharge into the creek is through 40 feet of low permeability silty clay alluvium (labeled Layer 1 in Exhibit D) so that migration to the creek is very slow.
- Water level measurements at MW7-LS and MW8-LS also document the existence of a small horizontal gradient oriented west to east at the Bedrock Interface Zone, along the axis of the creek, shown by the white arrow on top of the blue cylinder in Exhibit E.
- This gradient creates the potential for slow migration of a small portion of groundwater in the Bedrock Interface Zone along the axis of Rock Creek to the east.
- Some of the highest VOC concentrations in groundwater are detected in monitoring wells MW7-LS and MW8-LS, which are screened within the Bedrock Interface Zone near Rock Creek.
- These represent contaminants that migrated toward Rock Creek in the past along the 1,000foot wide groundwater flow path between the GE facility and the creek.
- The VOCs are concentrated in the stagnant zone in the Bedrock Interface Zone beneath Rock Creek.

Southern Irrigation Well

As part of the FSI, MWH collected groundwater samples from the south irrigation well located on the golf course, approximately 1,000 feet south of Rock Creek. This irrigation well is located on the other side of the groundwater divide from GE facility. However, a groundwater sample collected from the irrigation well in August 2012, contained a trace amount of TCE (estimated concentration of TCE at 0.93 μ g/l). The well had been operating on a continuous basis during that summer and reportedly at a rate of approximately 60-80 gallons per minute.

To provide further analysis of the groundwater flow regime and to delineate the divide, three monitoring well nests, each containing a shallow and deep well, were installed south of Rock Creek. Locations of the well nests (MW11, MW12, and MW13) are shown on Exhibit B.

The well nests were located 500 feet south of Rock Creek for the following reasons:

- The purpose of installing the wells was to collect groundwater level measurements to verify whether Rock Creek acts as a groundwater divide.
- Horizontal gradients in the basin are relatively low (a 1 foot change in elevation over 1,400 horizontal feet). Therefore a longer (rather than shorter) distance was needed between the new wells and Rock Creek to provide a measureable difference in water elevations.
- The CSM predicted the VOCs were sequestered in a cylindrical zone 100 feet below Rock Creek, which coincides with the groundwater divide. However, it is expected that the VOCs extend outward somewhat both north and south from the physical centerline of the creek, forming the cylindrical stagnant zone depicted in Exhibit E.

After the monitoring well nests were installed, groundwater samples were collected and water levels were measured from all the wells. These results were reported in the FSI Addendum Report (MWH, 2014). Chlorinated VOCs were not detected in the groundwater samples collected from the wells installed south of Rock Creek. The water levels were used to plot the potentiometric distributions on Exhibit B and C, which show hydraulic gradients toward the creek from both sides. Both sampling results and water levels confirm that Rock Creek creates a physical divide, separating the groundwater flow regime on the north from the regime on the south

The trace detection of TCE in the southern irrigation well is not inconsistent with the CSM finding that Rock Creek is a groundwater divide. The detection only indicates that a pumping well operated continuously at a high extraction rate can create a minor distortion in potentiometric distribution which allows the occasional capture of a small amount of VOCs from the stagnant zone located at the divide.

A pumping well creates a cone of depression extending 360 degrees from the well, and it draws groundwater from all directions. The occurrence of trace levels of TCE in a sample from this well indicates the cone of depression caused by a pumping well operated at a high extraction rate can extend to the stagnant zone beneath Rock Creek. Small "puffs" of TCE from the outer edge of the stagnant zone may be captured by the cone of depression.

Pumping from the irrigation well did not move the divide. If it had, VOCs would have been detected at elevated levels in one or more of the new monitoring wells. As indicated above, however, chlorinated solvents were not detected in the groundwater samples from the wells installed south of Rock Creek.

IEPA Comment 2: Page 5-3: Are there plans to replace the south golf course irrigation well?

<u>Response to IEPA Comment 2:</u> There are no plans to replace the south golf course irrigation well. As indicated above, only a trace level of TCE was detected in the well during a period of a continuous high rate of pumping. As reported in the FSI, no VOCs were detected in the south golf course irrigation pond to which the well discharged.

<u>IEPA Comment 4:</u> Page 5-3: A better, more detailed explanation regarding soil concentrations in the vicinity of the Main Building is needed. While it is true that "no free-phase dense non-aqueous phase liquids were identified" near the Main Building, concentrations of contaminants of concern (COC) in soils remain high, despite the fact that chlorinated solvent use apparently stopped in 1994. The concentrations of several COCs exceed the Part 742 soil component of the groundwater ingestion pathway (migration to groundwater) soil remediation objectives (SRO) in several samples from 1 to 28 feet below ground surface under the building and near the building, as reported in the May 2012 Interim Data Report. For example, the concentration of 1,1-DCE was 583 times the SRO at a depth of 20 feet in sample SB-07 (700 times the SRO in the duplicate sample) and 108 times the SRO at a depth of 15 feet in sample SB-06. The concentration of PCE was 53 times the SRO at a depth of four feet in sample SB-14. This report appears to minimize the situation regarding remaining source materials by referring to them as being detected at "relatively low levels."

Response to IEPA Comment 4: An extensive soil investigation in and around the Main Building was conducted during the FSI. A total 34 soil borings were drilled for the purpose of collecting soil samples. The soil investigation extended across a broad area, approximately 1,000 feet from east to west and approximately 400 feet north to south and targeted areas where VOCs would be most likely to exist. Those areas included the former 1,1,1-TCA above ground storage tank (AST), the former western degreaser and the former central degreaser. Additional borings were installed along the interior and exterior sewer lines and several other areas, as requested by the IEPA. A total of 60 soil samples were analyzed for VOCs.

The locations of the samples were plotted along with the concentrations of detected compounds on Figures 5 and 6 of the FSI Report with the objective of identifying any patterns in the distribution. While there are some relatively high concentrations of individual compounds in individual soil borings, there is no overall pattern of contamination, or of significant hot spots or zones containing non-aqueous phase liquids (NAPLs).

Exhibit F was developed in a further effort to identify patterns in the occurrence and concentrations of VOC contaminants. Twenty different VOCs were detected in the soil samples analyzed during the FSI. They are listed on Exhibit F with orange shading to identify the compounds that were detected at concentrations above their respective SRO. There were nine detections above the SROs for the SCGIER (orange shaded). Those that are not shaded were not detected at a concentration above their respective SRO.

The data is sorted to bring compounds to the top based on the highest detections in down gradient groundwater (adjacent to Rock Creek). The data shows there are five VOCs detected in site soils that also exceed their respective groundwater remediation objective (GRO) in groundwater in the Bedrock Interface Zone near Rock Creek. 1,1-dichloroethene is the VOC that was detected at the highest concentration during the FSI soil sampling. The likely source of 1,1-DCE is from the breakdown of TCE and 1,1,1-TCA. When either TCE or 1,1,1-TCA undergoes reductive dehalogenation, 1,1-DCE is one of the first daughter products formed. Like TCE, 1,1-DCE was consistently detected above its GRO in down gradient groundwater samples collected from MW7-LS and MW8-LS. These observations are consistent with the conclusion that chlorinated VOCs are actively attenuating at the site.

The soil samples where concentrations of VOCs are above SROs will be evaluated and addressed in the forthcoming Remedial Objectives Report (ROR).

<u>IEPA Comment No. 5:</u> Figure 7 and Figure 8: Please clarify the geologic description for well MW8-LS. Each figure has a different description for the well. Is one of the wells MW09?

Response to IEPA Comment No. 5: The geologic description in question is MW8-LS, Figures 7 and 8 have been revised and are included as Exhibit G.

If you have any questions, please contact myself at (312) 831-3432 or Peter Vagt at (312) 831-3466.

Sincerely,

MWH AMERICAS, INC.

David Powers Project Manager

Attachments:

EXHIBIT A – USGS STREAM FLOW DATA – ROCK CREEK

EXHIBIT B - POTENTIOMETRIC PLOT OF THE BEDROCK INTERFACE ZONE

EXHIBIT C - POTENTIOMETRIC PLOT ON CROSS SECTION

EXHIBIT D – GEOLOGIC CROSS SECTION

EXHIBIT E – CONCEPTUAL SITE MODEL

EXHIBIT F - CHARACTERISTICS OF VOCS IN SITE SOILS

EXHIBIT G - REVISED FIGURES

EXHIBIT A

USGS STREAM FLOW DATA — ROCK CREEK

Exhibit A. Stream Discharge Record for Rock Creek Collected by USGS.

ontinuous records kept for the followin April 1, 1940 through Septem		4.5 yrs
October 1, 1977 through Sept		9.0 yrs
Total Number of Data Points:	4200	
Minimum Flow:	7.4 cfs	
Maximum Flow:	2060 cfs	
Average Flow:	120 cfs	
Median Flow Value:	75 cfs	
Mode Flow Value:	50 cfs	

Data are tabulated below.

WARNING

The data you have obtained from this automated U.S. Geological Survey database

- # have not received Director's approval and as such are provisional and subject to # revision. The data are released on the condition that neither the USGS nor the # United States Government may be held liable for any damages resulting from its use.
- # Additional info: http://waterdata.usgs.gov/nwis/help/?provisional
- # File-format description: http://waterdata.usgs.gov/nwis/?tab_delimited_format_info # Automated-retrieval info: http://waterdata.usgs.gov/nwis/?automated_retrieval_info
- # Contact: gs-w_support_nwisweb@usgs.gov # retrieved: 2012-04-12 11:46:30 EDT
- (caww02)
- # Data for the following 1 site(s) are contained in this file # USGS 05446000 ROCK CREEK AT MORRISON, IL
- # Data provided for site 05446000
- # DD parameter statistic Description
- # 01 00060 00003 Discharge, cubic feet per second (Mean)
- # Data-value qualification codes included in this output:
- # A Approved for publication -- Processing and review completed.

agency_c	d site_no	datetime	01_00060_00003	01_00060_00003_cd
5s	15s	20d	14n	10s
USGS	5446000	4/1/1940	41	A
USGS	5446000	4/2/1940	40	A
USGS	5446000	4/3/1940	57	A
USGS	5446000	4/4/1940	54	A
USGS	5446000	4/5/1940	44	A
USGS	5446000	4/6/1940	37	A
USGS	5446000	4/7/1940	43	A
USGS	5446000	4/8/1940	63	A
USGS	5446000	4/9/1940	61	A
USGS	5446000	4/10/1940	50	A
USGS	5446000	4/11/1940	58	A
USGS	5446000	4/12/1940	53	A
USGS	5446000	4/13/1940	43	A
USGS	5446000	4/14/1940	39	A
USGS	5446000	4/15/1940	37	A
USGS	5446000	4/16/1940	33	A
USGS	5446000	4/17/1940	44	A
USGS	5446000	4/18/1940	76	A
USGS	5446000	4/19/1940	75	A
USGS	5446000	4/20/1940	51	A
USGS	5446000	4/21/1940	43	A
USGS	5446000	4/22/1940	40	A
USGS	5446000		38	A
USGS	5446000	4/24/1940	38	A
USGS	5446000	A CONTRACTOR OF THE PARTY OF TH	36	A
USGS	5446000	-	34	A
USGS	5446000		32	A
USGS	5446000		30	A
USGS	5446000		32	A
USGS	5446000	4/30/1940	36	A
USGS	5446000		34	A
USGS	5446000	5/2/1940	32	A
USGS	5446000	5/3/1940	30	A
USGS	5446000	5/4/1940	27	A
USGS	5446000		26	A
USGS	5446000		26	A
USGS	5446000		25	A
USGS	5446000		25	A
USGS	5446000		27	A
USGS	5446000		27	A
USGS	5446000		30	A
USGS	5446000		27	A
USGS	5446000	1	25	A
USGS	5446000		24	A
USGS	5446000		23	A
Hece	EAACOOO		20	Α.

Frequency 1600 1400 1200 1000 800 600 400 200 5 8 9 10 11 12 13 Average Flow = 120 cfs Mode of Flow = 50 cfs Percentage of time stream discharge

	Flow	Frequency
1	2.718282	0
2	4.481689	0
3	7.389056	0
4	12.18249	12
5	20.08554	121
6	33.11545	156
7	54.59815	835
8	90.01713	1446
9	148.4132	910
10	244.6919	421
11	403.4288	139
12	665.1416	75

49

32

4200

13 1096.633

14 1808.042

15 2980.958

Total

>2980.958

100% 0 100% 12 100% 133 97% 1124 73% 2570 39% 3480 17% 3901 7% 4040 4115 2% 4164 1% 4196 0% 0% 4200

equals or exceeds this value.

Cum Percent

Full Database Available upon Request from MWH

Exhibit A. Stream Discharge Record for Rock Creek Collected by USGS.

EXHIBIT B

POTENTIOMETRIC PLOT OF THE BEDROCK INTERFACE ZONE

Potentiometric Plot of the Bedrock Interface Zone. Exhibit B.

EXHIBIT C

POTENTIOMETRIC PLOT ON CROSS SECTION

EXHIBIT D

GEOLOGIC CROSS SECTION

Geologic Cross Section. Exhibit D.

EXHIBIT E

CONCEPTUAL SITE MODEL

EXHIBIT F

CHARACTERISTICS OF VOCS IN SITE SOILS

Exhibit F. Characteristics of VOCs in Site Soils Former GE Morrison Facility Morrison, Illinois

Sorted by Maximum Downgradient Concentration in Groundwater (1)

Volatile Organic Compound	Tier 1 SRO for Soil (µg/kg)	Number of Detections in Soils	Maximum Concentration Detected in Soil (µg/kg)	Maximum Concentration Detected in Groundwater (µg/L)
Trichloroethene	60	28	520	4,800
cis-1,2-Dichloroethene	400	4	3,300 E	3,000
1,1,1-Trichloroethane	2,000	25	12,000	200
1,1-Dichloroethene	60	20	42,000	200
trans-1,2-Dichloroethene	700	3	350 E	98
1,1-Dichloroethane	23,000	11	15,000	71
Vinyl Chloride	10	2	11	52
Methylene Chloride	20	30	300 J	ND
Tetrachloroethene	60	8	3,200	ND
1,2-Dichloroethane	20	8	1,100 J	ND
1,1,2-Trichloroethane	20	3	2,900	ND
Acetone	25,000	4	14 J	ND
1,2,4 - Trichlorobenzene	5,000	3	1.0J	ND
Chloroform	600	2	1.3 J	ND
Dibromochloromethane	400	1	2.8 J	ND
2-butanone (MEK)		3	4,700	ND
2-Hexanone		1	8.6	ND
4-methyl-2-pentanone		3	510	ND
Chloroethane		1	2.6 J	ND
Methylcyclohexane		1	0.85 J	ND

Notes

Highlighted result is above one or more TACO screening standard.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

ND - not detected

TACO - Tiered Approach to Corrective Action Objectives, 35 Illinois Administrative Code Part 742.

Tier 1 SRO - TACO Tier 1 Soil Remediation Objective, 35 IAC Part 742, Table A.

μg/kg - micrograms per kilogram

μg/L - micograms per liter

^{--- -} Indicates there is no established screening criteria for this compound.

^{(1) -} Maximum detected downgradient concentration in groundwater samples collected from MW7-LS and MW8-LS.

E - Result exceeded calibration range.

EXHIBIT G

REVISED FIGURES

Exhibit 10

Selected Materials from ARCADIS' Vapor Intrusion Sampling Report (dated May 2014)

Case: 3:13-cv-50348 Document #: 40-5 Filed: 02/27/15 Page 48 of 83 PageID #:1141

Case: 3:13-cv-50348 Document #: 40-5 Filed: 02/27/15 Page 49 of 83 PageID #:1142

Case: 3:13-cv-50348 Document #: 40-5 Filed: 02/27/15 Page 51 of 83 PageID #:1144

3 of 12

Table 3
On-Site Soil Sampling Results - Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

								•					
***************************************		Soil Remediation Objectives			-								
•		Inhalation			SB07-20							SB11-13	
VOCe (SWISAE 9250)	Units	(a)	SB06-15	SB07-20	Duplicate	SB08-28	SB09-20	SB10-14	SB10-20	SB11-12	SB11-13	Duplicate	SB12-2
1 1 1-Trichlomethane	2/1/21	000 000 7	1102/6/21	12/5/2011	1102/6/21	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011
1 1 2 7 Totamble conferen	ng/kg	מסט'מסצ'ו	4,600	2,700 U	f 099	12,000	16	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
1, 1, 2, 2-1 ett act not oett affe	hg/kg		290 U	2,700 ∪	2,900 U	1,400 ∪	4.0 ∪	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 ∪
1,1,2-Inchloro-1,2,2-trifluoroethane	ng/kg	- The state of the	290 U	2,700 ∪	2,900 ∪	1,400 ∪	4.0 ∪	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 U	4.3 ∪
1,1,2-Trichloroethane	µg/kg	1,800,000	290 ∪	2,700 U	2,900	1,400 ∪	4.0 ∪	4.6 U	4.5 ∪	4.9 U	4.6 ∪	4.6 ∪	4.3 ∪
1,1-Dichloroethane	µg/kg	1,700,000	150 J	2,700 U	2,900 U	15,000	37	4.6 U	1.0.1	4.9 ∪	4.6 U	4.6 U	4.3 U
1,1-Dichloroethene	µg/kg	470,000	6,500	35,000	42,000	15,000	140	2.0.5	8.2	0.4	1.1	4.6 ∪	0.88 J
1,2,4-Trichlorobenzene	hg/kg	3,200,000	290 U	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 U	4.3 U
1,2-Dibromo-3-chloropropane	µg/kg	17,000	290 U	2,700 U	2,900 ∪	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 U	4.3 U
1,2-Dibromoethane (EDB)	µg/kg	120	290 U	2,700 ∪	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 ∪	4.6 ∪	4.6 ∪	4.3 ∪
1,2-Dichlorobenzene	µg/kg	560,000	290 U	2,700 U	2,900 ∪	1,400 ∪	4.0 U	4.6 ∪	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
1,2-Dichloroethane	µg/kg	700	410	940 J	1,100 J	1,100 J	4.0 ∪	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 ∪	4.3 ∪
1,2-Dichloropropane	µg/kg	23,000	290 U	2,700 ∪	2,900 ∪	1,400 ∪	4.0 U	4.6 ∪	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
1,3-Dichlorobenzene	µg/kg		290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
1,4-Dichlorobenzene	µg/kg	17,000,000	290 U	2,700 U	2,900 ∪	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
2-Butanone (MEK)	µg/kg	-	290 U	3,700	4,700	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
2-Hexanone	µg/kg	•	290 ∪	2,700 U	2,900 ∪	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3.0
4-Methyl-2-Pentanone (MIBK)	µg/kg	_	290 ∪	2,700 U	510 J	1,400 U	4.0 U	4.6 ∪	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
Acetone	µg/kg	100,000,000	1,100 U	11,000 U	12,000 U	5,500 ∪	16 U	19 U	18 U	20 ∩	18 U	18 U	17 U
Benzene	µg/kg	1,600	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 ∪	4.5 U	4.9 U	4.6 ∪	4.6 U	4.3 ∪
Bromodichloromethane	hg/kg	3,000,000	290 U	2,700 ∪	2,900 ∪	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 ∪	4.3 U
Bromoform	µg/kg	100,000	290 U	2,700 U	2,900 U	1,400 ∪	4.0 ∪	4.6 U	4.5 U	4.9 U	4.6 U	4.6 ∪	4.3 U
Bromomethane	µg/kg	15,000	290 ∪	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 ∪	4.6 ∪	4.3 U
Carbon disulfide	µg/kg	720,000	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 ∪	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
Carbon tetrachloride	hg/kg	640	290 U	2,700 U	2,900 U	1,400 U	4.0 ∪	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 U
Chlorobenzene	hg/kg	210,000	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 ∪
Chloroethane	hg/kg		290 U	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U*	4.5 U*	4.9 U*	4.6 U*	4.6 U*	4.3 U*
Chloroform	ng/kg	540	290 U	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 ∪	4.6 U	4.6 U	4.3 ∪
Chloromethane	hg/kg	-	Z90 U	2,700 U	2,900 U	1,400 ∪	4.0 ∪	4.6 U	4.5 U	4.9 ∪	4.6 U	4.6 U	4.3 ∪
cis-1,2-Dichloroethene	ng/kg	1,200,000	290 U	2,700 U	2,900 U	1,400 ∪	4.0 ∪	4.6 U	4.5 U	4.9 ∪	4.6 U	4.6 U	4.3 ∪
cis-1,3-Dichloropropene	hg/kg	2,100	290 U	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 ∪	4.9 ∪	4.6 U	4.6 U	4.3 ∪
Cyclohexane	hg/kg	-	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 U	4.9 ∪	4.6 U	4.6 U	4.3 ∪
Dibromochloromethane	µg/kg	1,300,000	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 ∪	4.9 ∪	4.6 U	4.6 U	4.3 ∪
Dichlorodifluoromethane	ng/kg	-	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3 ∪
Ethylbenzene	ug/kg	400,000	290 U	2,700 U	2,900 U	1,400 U	4.0 ∪	4.6 U	4.5 U	4.9 ∪	4.6 U	4.6 ∪	4.3 ∪
Isopropylbenzene (Cumene)	µg/kg	-	290 U	2,700 ∪	2,900 ∪	1,400 U	4.0 U	4.6 U	4.5 ∪	4.9 ∪	4.6 U	4.6 U	4.3 U
Methyl Acetate	ng/kg		290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 ∪	4.5 U	4.9 ∪	4.6∪	4.6 ∪	4.3 U
Methyl-terf-butyl ether	µg/kg	8,800,000	290 U	2,700 U	2,900 U	1,400 U	4.0 U	4.6 U	4.5 ∪	4.9 ∪	4.6∪	4.6 ∪	4.3 ∪
Methylcyclohexane	µg/kg		290 U	2,700 ∪	2,900 ∪	1,400 U	4.0 U	4.6 U	4.5 U	4.9 ∪	4.6 ∪	0.85 J	4.3 ∪

ARCADIS

4 of 12

On-Site Soil Sampling Results - Volatile Organic Compounds **GE Morrison Facility** Morrison, Illinois Table 3

		Soil Remediation Objectives	- 1										
·		Inhalation	·		SB07-20							SR11.13	
Compound	Units	(a)	SB06-15	SB07-20	Duplicate	SB08-28	SB09-20	SB10-14	SB10-20	SB11-12	SB11-13	Duplicate	SB12-2
Methylene Chloride	µg/kg	24,000	82 J	2,700 U	2,900 ∪	300 7	1.6 JB	1.7 JB	2.0 JB	2.3.JB	2.2.JB	24.IB	39.IB
Styrene	hg/kg	1,500,000	290 U	2,700 ∪	2,900 ∪	1,400 U	4.0 U	461	4511	4911	4 6 11	4611	4311
Tetrachloroethene	µg/kg	20,000	L 77	2,700 U	2,900 ∪	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	460	430
Toluene	µg/kg	000'059	290 U	2,700 U	2,900 ∪	1.400 U	4.0 U	4.6 ∪	4.5 U	490	4611	461	4311
trans-1,2-Dichloroethene	µg/kg	3,100,000	290 U	2,700 ∪	2,900 ∪	1,400 ∪	4.0 U	4.61)	451	4911	4611	4611	4311
trans-1,3-Dichloropropene	µg/kg	2,100	290 U	2,700 U	2,900 U	1,400 ∪	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	460	4.3 U
Trichloraethene	µg/kg	8,900	46 J	2,700 U	2,900 ∪	1,400 ∪	0.905	4.6 U	4.5 U	4.9 U	4.6 U	460	13.1
Trichlorofluoromethane	µg/kg		290 U	2,700 U	2,900 ∪	1,400 U	4.0 U	4.6 U	4.5 U	4.9 U	4.6 U	4.6 U	4.3.0
Vinyl chloride	µg/kg	1,100	290 U	2,700 ∪	2,900 ∪	1,400 U	1.8 J	4.6 U	4.5 U	4.91	4611	4613	4311
Xylenes, Total	µg/kg	320,000	860 U	8,100 U	8,800 ∪	4.100 U	12 U	14.0	14.0	1511	14 !	1411	1311
Notes.								,	?			2	2

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B. Table B - Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties

- = Indicates there is no established Remediation Objective for this compound

* = Laboratory control sample or laboratory conrol sample duplicate exceeds

the control limits

B = Analyte was detected in the associated method blank

E = Result exceeded calibration range

Illinois EPA = Illinois Environmental Protection Agency J = Estimated concentration

µg/kg = Micrograms per kilogram

U = Compound not detected

VOCs = Volatile organic compounds

5 of 12

Table 3
On-Site Soil Sampling Results - Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

		Soli Kemediation Objectives											
Compound	Units	Inhalation (a)	SB12-10	SB13A-13	SB13A-13 Duplicate	SB14-4	SB14-13	SR15.5	SB15_8	CB16.1	SD16.16	V 27.43	CD47.40
VOCs (SW846 8260)			12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/6/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011	12/7/2011
1,1,1-Trichloroethane	µg/kg	1,200,000	1.9 J	22	7.1	5,800	2.4 J	4.6 U	4.5 U	1.5 J	4.4 U	4.3 U	4.6 U
1,1,2,2-Tetrachloroethane	µg/kg	-	4.4 U	4.9 ∪	5.1 U	230 ∪	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 ∪	4.6 ∪
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/kg		4.4 U	0 6′⊅	5.1 U	230 U	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6∪
1,1,2-Trichloroethane	hg/kg	1,800,000	4.4 U	4.9 U	5.1 ∪	230 U	4.7 U	4.6 ∪	4.5 U	4.5 J	4.4 ∪	3.4 J	4.6 U
1,1-Dichloroethane	µg/kg	1,700,000	4.4 U	4.9 U	5.1 U	230 U	4.7 U	4.6 ∪	1.2 J	4.6 U	4.4 U	430	4.6 U
1,1-Dichloroethene	hg/kg	470,000	5.1	4.9 ∪	5.1 U	150 J	4.7 U	4.6 ∪	9.1	4.6 U	4.4 U	8,5	16
1,2,4-Trichlorobenzene	ng/kg	3,200,000	4.4 U	4.9 ∪	5.1 U	230 U	4.7 U	4.6 ∪	4.5 U	4.6 U	0.98 J	4.3 U	4.6 ∪
1,2-Dibromo-3-chloropropane	µg/kg	17,000	4.4 U	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
1,2-Dibromoethane (EDB)	µg/kg	120	4.4 U	4.9 ∪	5.1 U	230 ∪	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
1,2-Dichlorobenzene	µg/kg	560,000	4.4 U	4.9 U	5.1 U	230 U	4.70	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
1,2-Dichloroethane	µg/kg	700	4.4 ∪	2.3 J	5.1 U	F 89	4.7 U	4.6 ∪	4.5 U	1.9 J	4.4 U	1.7.1	4.6 U
1,2-Dichloropropane	ng/kg	23,000	4.4 U	4.9 U	5.1 U	230 ∪	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
1,3-Dichlorobenzene	µg/kg	**	4.4 U	4.9 U	5.1 U	230 ∪	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
1,4-Dichlorobenzene	µg/kg	17,000,000	4.4 U	4.9 ∪	5.1 U	230 ∪	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	461
2-Butanone (MEK)	µg/kg	-	4.4 U	4.9 U	5.1 U	230 ∪	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	3.2 J	4.6 U
2-Hexanone	µg/kg	1	4.4 U	4.9 ∪	5.1 U	230 ∪	4.7 U	4.6 U	4.5 U	461	4411	8.6	4611
4-Methyl-2-Pentanone (MIBK)	µg/kg	1	4.4 ∪	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 U	0.94 J	4.4 U	0.94	4.6.0
Acetone	µg/kg	100,000,000	18 U	20 U	20 U	910 U	19 U	18 U	18 U	4.9 J	18 U	14.3	18 U
Benzene	ng/kg	1,600	4.4 U	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 ∪	4.4 U	4.3 U	4.6 U
Bromodichloromethane	hg/kg	3,000,000	4.4 ∪	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 ∪	4.4 U	4.3 U	4.6 U
Bromoform	µg/kg	100,000	4.4 ∪	4.9 ∪	5.1 U	230 U	4.7 U	4.6 ∪	4.5 U	4.6 ∪	4.4 U	4.3 U	4.6 U
Bromomethane	µg/kg	15,000	4.4 U	4.9 U	5.1 U	230 ∪	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Carbon disulfide	µg/kg	720,000	4.4 U	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 ∪
Carbon tetrachloride	лg/kg	640	4.4 ∪	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 ∪
Chlorobenzene	ng/kg	210,000	4.4 ∪	4.9 ∪	5.10	230 U	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 ∪
Chloroethane	hg/kg		4.4 U*	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 ∪
Chloroff	µg/kg	540	4.4 U	4.9 ∪	5.10	230 U	4.7 U	4.6 U	4.5 U	1.2.1	4.4 U	1.3 J	4.6 ∪
Chloromethane	hg/kg	4	4.4 U	4.9 ∪	5.1 U	230 U	4.7 U	4.6 U	4.5 ∪	4.6 U	4.4 U	4.3 ∪	4.6 U
ds-1,2-Dichloroethene	hg/kg	1,200,000	4.4 U	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	82	4.4 U	3,300 €	39
cls-1, 3-Ulchloropropene	hg/kg	2,100	4.4 ∪	4.9 U	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Cydonexane	ng/kg		4.4 U	4.9 ∪	5.1 U	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 ∪
Dibromochloromethane	ng/kg	1,300,000	4.4 ∪	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 U	2.8 J	4.4 U	4.3 U	4.6 U
Urchlorodifluoromethane	µg/kg		4.4 U	4.9 U	5.10	230 U	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Ethylbenzene	hg/kg	400,000	4.4 U	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 ∪	4.6 U	4.4 ∪	4.3 U	4.6 U
Isopropylbenzene (Cumene)	hg/kg	-	4.4 U	4.9 U	5.10	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Metnyl Acetate	hg/kg	***	4.4 U	4.9 ∪	5.1 U	230 ∪	4.7 U	4.6 ∪	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Metnyl-ten-butyl etner	rg/kg	8,800,000	4.4 U	4.9 U	5.1 ∪	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 U	4.6 U
Internyicydonexane	ng/kg	-	4.4 U	4.9 ∪	5.10	230 U	4.7 U	4.6 U	4.5 U	4.6 U	4.4 U	4.3 ∪	4.6 U

On-Site Soil Sampling Results - Volatile Organic Compounds GE Morrison Facility Morrison, Illinois Table 3

		Soil Remediation											
		Objectives											
		Inhalation			SB13A-13								
Compound	Units	(a)	SB12-10	SB13A-13		SB14-4	SB14-13	SB15-5	SR15.8	SB16.1	SR16.15	SB17.4	CB17.40
Methylene Chloride	hg/kg	24,000	2.2 JB	1.7 JB	1.5 JB	230 U	15.B	15.B	21.IR	O 65 IR	17 in	12.10	37 IB
Styrene	ug/kg	1,500,000	4.4 U	4.9 U	5.111	23011	4711	181	1 2 1	1197	3 - 7	2000	
Tetrachloroethene	ua/ka	20,000	4411	9 9		2000		0 -	2 :	0	7	1.30	0.0.1
	D. D.L	200'01		2.5	2	3,200	4./ U	4.6 U	4.50	2.1.3	4.4 U	7.3 €	7.6 ∪
loluene	µg/kg	650,000	4.4 U	4.9 ∪	5.10	230 ∪	4.7 U	4.6 U	4.5	4611	4411	4311	4611
trans-1,2-Dichloroethene	µg/kg	3,100,000	4.4 U	4.9 U	5.10	23011	4711	4611	4511	3.3.1	1377	350 5	
frans-1,3-Dichloropropene	ua/ka	2 100	11//	1001	114	1 000		2	2	20.5	7	300	2
	200	2,100	D F.	200	2	0.002	4.7 0	4.b U	4.5 U	4.6 U	440	4.3 ∪	4.6 ∪
Lichordemene	µg/kg	8,900	1.1	3.9 7	0.82 J	520	4.7 U	4.6 U	4.5 U	250 E	18	44	48
Trichlorofluoromethane	µg/kg		4.4 U	4.9 U	5.10	230 U	4711	4611	4511	181	1777	13.11	7611
Vind chloride	100/1/20	4 400					,	2	2	5	2	202.	t,
DOLLOW SELECTION OF THE PROPERTY OF THE PROPER	hg/kg	1,100	4.4 0	4.9 ∪	5.1 U	230 U	4.7 ∪	4.6 ∪	4.5 ∪	4.6 ∪	4.4 \	7	4.6 ∪
Xylenes, Total	µg/kg	320,000	13 U	15 U	15 U	680 U	141	14 11	14 ! !	1411	1311	43	17711
Notes							,	,		2	000	200	2

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table B - Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties

- = Indicates there is no established Remediation Objective for this compound

* = Laboratory control sample or laboratory conrol sample duplicate exceeds

B = Analyte was detected in the associated method blank the control limits

E = Result exceeded calibration range

J = Estimated concentration

Illinois EPA = Illinois Environmental Protection Agency

µg/kg = Micrograms per kilogram

U = Compound not detected

VOCs = Volatile organic compounds

7 of 12

Table 3
On-Site Soil Sampling Results - Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

		Soil Domodiation											
·		Objectives										777741111	
Compound	Units	Inhalation (a)	SB20-20	SB21-12	SB21-15	SR22.4	SB22.7	SB23.4	0	77000	600440	SB24-12	0
VOCs (SW846 8260)			12/8/2011	12/21/2011	╁	12/20/2011	12/20/2011	12/20/2011	12/20/2011	12/20/2011	12/20/2011	12/20/2011	12/21/2011
1,1,1-Trichloroethane	µg/kg	1,200,000	290 U	5.1	1.5.1	4.7 U	4.4 ∪	4.8 U	4.2 U	4.7 U	4211	4611	481
1,1,2,2-Tetrachloroethane	µg/kg	-	290 U	4.2 U	4.8 ∪	4.7 U	4.4 ∪	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/kg	*	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,1,2-Trichloroethane	µg/kg	1,800,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,1-Dichloroethane	µg/kg	1,700,000	290 U	0.53 J	0.94 J	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	0.83 J	4.6 U	4.8 U
1,1-Dichloroethene	µg/kg	470,000	1,300	4.2 U	4.8 ∪	4.7.U	4.4 U	4.8 ∪	4.2 U	4.7 U	420	4611	4811
1,2,4-Trichlorobenzene	µg/kg	3,200,000	290 U*	1.0 J	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,2-Dibromo-3-chloropropane	µg/kg	17,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 ∪	4.8 U	4.2 U	4.7 U	4.2 U	461	481
1,2-Dibromoethane (EDB)	µg/kg	120	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,2-Dichlorobenzene	µg/kg	560,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	461	481
1,2-Dichloroethane	hg/kg	200	290 ∪	4.2 U	4.8 U	4.7 U	4.4 U	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,2-Dichloropropane	µg/kg	23,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,3-Dichlorobenzene	µg/kg		290 ∪	4.2 U	4.8 U	4.7 ∪	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
1,4-Dichlorobenzene	µg/kg	17,000,000	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8.U
2-Butanone (MEK)	µg/kg		290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 ∪	4.6 U	4.8 U
2-Hexanone	µg/kg	3	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
4-Methyl-2-Pentanone (MIBK)	µg/kg		290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Acetone	µg/kg	100,000,000	1200 U	17 U	19 U	19 U	17 U	19 U	17 U	19 U	17 U	18 U	19 U
Benzene	µg/kg	1,600	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Bromodichloromethane	µg/kg	3,000,000	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Bramaform	ng/kg	100,000	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Bromomethane	hg/kg	15,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
Carbon disulfide	hg/kg	720,000	290 ∪	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 ∪
Carbon tetrachloride	ng/kg	640	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
Chlorobenzene	hg/kg	210,000	290 ∩	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 ∪
Ciloroetnane	ng/kg	-	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
Chlorolorm	hg/kg	540	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
Chloromethane	hg/kg	•	290 ∩	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
ds-1,2-Dichloroethene	hg/kg	1,200,000	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
cis-1,3-Dichloropropene	ng/kg	2,100	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 U
Cyclohexane	ng/kg		290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 ∪	4.2 ∪	4.7 U	4.2 U	4.6 U	4.8 U
Ulbromochloromethane	ng/kg	1,300,000	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 ∪
Dichlorodifluoromethane	ng/kg	•	290 U	4.2 U	4.8 ∪	4.7 U	4.4 ∪	4.8 ∪	4.2 U	4.7 U	4.2 U	4.6 U	4.8 ∪
Ethylbenzene	µg/kg	400,000	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 ∪
Isopropylbenzene (Cumene)	µg/kg		290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Methyl Acetate	µg/kg	**	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8 ∪
Methyl-tert-butyl ether	ng/kg	8,800,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 U
Methylcyclohexane	hg/kg		290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 ∪	4.8 ∪
													-

8 of 12

On-Site Soil Sampling Results - Volatile Organic Compounds GE Morrison Facility Morrison, Illinois Table 3

		Soil Remediation Objectives											
		Inhalation				-				******		SB24.42	
Compound	Units	(a)	SB20-20	SB21-12	SB21-15	SB22-4	SB22-7	SB23-4	SB23-8	SB24-5	SB24-12	Dunlicate	SB25.8
Methylene Chloride	µg/kg	24,000	290 U	4.2 U	4.8 U	4.7 U	4.4 ∪	4.8 U	420	47.0	420	4611	481
Styrene	µg/kg	1,500,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	471	420	4611	481
Tetrachloroethene	µg/kg	20,000	290 U	0.57 J	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	460	4.8 U
Toluene	µg/kg	000'059	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	420	4611	4811
trans-1,2-Díchloroethene	µg/kg	3,100,000	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	420	4711	4211	4611	4811
trans-1,3-Dichloropropene	µg/kg	2,100	290 U	4.2 U	4.8 U	4.7 U	4.4 U	4.8 U	4.2 U	4.7.0	4.2 U	4.6.0	4.8 U
Trichloroethene	µg/kg	8,900	290 ∪	3.4 J	0.68 J	4.7 U	4.4 ∪	6.3	0.59 J	4.7 U	4.2 U	4.6 U	4.8.0
Trichlorofluoromethane	µg/kg	-	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2 U	4.6 U	4.8
Vinyl chloride	µg/kg	1,100	290 U	4.2 U	4.8 ∪	4.7 U	4.4 U	4.8 U	4.2 U	4.7 U	4.2.0	460	481
Xylenes, Total	hg/kg	320,000	880 ∪	13 U	14 U	14 U	13.0	1511	13(1	1411	13.11	1411	1411
Notes.										,	2	,	2

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table B - Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties

- = Indicates there is no established Remediation Objective for this compound

 * = Laboratory control sample or laboratory conrol sample duplicate exceeds the control limits

B = Analyte was detected in the associated method blank

E = Result exceeded calibration range

Illinois EPA = Illinois Environmental Protection Agency J = Estimated concentration

µg/kg = Micrograms per kilogram

VOCs = Volatile organic compounds U = Compound not detected

9 of 12

Table 3
On-Site Soil Sampling Results - Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

Cobjectives			Soil Remediation											
ound Units Inhalation SE26-11 SE26-2011 SE26-201			Objectives											
1976 1200,000 4.3 U 4.8 U 4.3 U 1.201/2011	Compound	Units	Inhalation (a)	SB25.11	9-36-8S	CB26.44	000000	6000 40	0004	6		SB33-5		
thane typing 1,200,000 4,3 U 4,8 U 4,3 U 18 U 4,3 U 18 U 4,3 U 4,8 U 4,3 U 5,8 U 4,3 U 4,8 U 4,3 U 5,8 U 4,3 U 4,3 U 5,8 U 4,3 U 4,3 U 5,8 U 4,3 U 5,8 U 4,3 U 4,3 U 5,8 U 4,3 U 5,8 U 4,3 U 5,8 U 4,3 U 4,3 U 4,3 U 4,3 U 5,8 U 4,3 U 4,3 U 4,3 U 4,3 U 5,8 U 4,3 U 4,3 U 4,3 U 4,3 U 4,3 U 5,8 U 4,3 U 4,3 U 4,3 U 4,3 U 5,8 U 4,3	's (SW846 8260)			12/21/2011	12/21/2011	+	12/29/2011	12/29/2011	12/29/2011	12/29/2011	12/29/2011	12/20/2011	5B33-9	3B34-20
Highed	I-Trichloroethane	µg/kg	1,200,000	4.3 U	4.8 U	-	13	0.94	5711	5 111	5411	1 102/2021	5 3 11	5.411
Higher H	2,2-Tetrachloroethane	µg/kg		4.3 U	4.8 U	4.3 U	5.8 ∪	6.4 U	5.7 U	5.10	5.4 U	5.8.0	530	5.411
Paying 1,800,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 4,700,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 4,700,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 4,700,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 560,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 560,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 560,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 4,3 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U 4,3 U 5,8 U Paying 7,000 7,0 U 4,8 U	2-Trichloro-1,2,2-trifluoroethane	µg/kg	-	4.3 ∪	4.8 U	4.3 ∪	5.8 U	6.4 U	5.7 U	5.10	5.4 U	5.8 U	5.3 U	5.4 U
Hg/kg 1,700,000 4.3 U 4.8 U 4.3 U 5.8 U Pg/kg 3,200,000 4.3 U 4.8 U 4.3 U 5.8 U EDB) 19/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U EDB) 19/kg 1,200 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,200 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 250,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,700,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,700,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,700,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,700,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,00,000 4.3 U <td>2-Trichloroethane</td> <td>µg/kg</td> <td>1,800,000</td> <td>4.3 ∪</td> <td>4.8 ∪</td> <td>4.3 U</td> <td>.5.8 ∪</td> <td>6.4 U</td> <td>5.7 U</td> <td>5.10</td> <td>5.4 U</td> <td>5.8 ∪</td> <td>5.3 U</td> <td>5.4 U</td>	2-Trichloroethane	µg/kg	1,800,000	4.3 ∪	4.8 ∪	4.3 U	.5.8 ∪	6.4 U	5.7 U	5.10	5.4 U	5.8 ∪	5.3 U	5.4 U
Highed 470,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 120 4.3 U 4.8 U 4.3 U 5.8 U Highed 120 4.3 U 4.8 U 4.3 U 5.8 U Highed 23,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 23,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 16,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 16,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 16,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 16,000 4.3 U 4.8 U 4.3 U 5.8 U Highed 17,000,000	Dichloroethane	µg/kg	1,700,000	4.3 ∪	4.8 U	4.3 ∪	5.8 U	6.4 U	5.7 U	5.1 U	1.5.1	1.6.1	5311	6
Highed 17,000 4.3 U 4.8 U 4.3 U 5.8 U EDB	Dichloroethene	µg/kg	470,000	4.3 ∪	4.8 ∪	4.3 ∪	5.8 U	6.4 ∪	5.7 ∪	1.9 J	5.4 U	5.8 U	531	48.1
Price Park 17,000 43 U 48 U 43 U 58 U 10 10 10 10 10 10 10	Trichlorobenzene	µg/kg	3,200,000	4.3 U	4.8 U	4.3 ∪	5.8 U	6.4 ∪	5.7 U	5.10	5.4 U	580	5311	5411
Higher 120	Dibromo-3-chloropropane	µg/kg	17,000	4.3 ∪	4.8 ∪	4.3 ∪	5.8 U	6.4 ∪	5.7 U	5.10	5411	5.81	53.1	5411
Harry Harr	Dibromoethane (EDB)	µg/kg	120	4.3 U	4.8 U	4.3 U	5.8 U	6.4 ∪	5.7 U	5.10	5.4 U	580	53.1	5411
Hg/kg 700 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 23,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,500 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,500 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,00,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,00,00 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 1,20,000 4.3 U 4.8 U 4.3 U 5.8 U)ichlorobenzene	µg/kg	260,000	4.3 U	4.8 ∪	4.3 U	5.8 U	6.4 ∪	5.7 U	5.10	5.4 U	5.8 U	5.3 U	5411
μg/kg 23,000 4,3 U 4,8 U 4,3 U 5,8 U μg/kg - 4,3 U 4,8 U 4,3 U 5,8 U μg/kg - 4,3 U 4,8 U 4,3 U 5,8 U μg/kg - 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 100,000,000 1,7 U 19 U 17 U 23 U μg/kg 1,600 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 1,600 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 1,600 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 1,600 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 1,500 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 2,10,000 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 1,20,000 4,3 U 4,8 U 4,3 U 5,8 U μg/kg 2,1000 4,3 U 4,8 U 4,3 U 5,8 U	Dichloroethane	µg/kg	700	4.3 U	4.8 ∪	4.3 ∪	5.8 ∪	6.4 U	5.7 U	5.10	5.4 ∪	5.8 U	5.3 U	5.4 U
μg/kg - 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg - 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.0 00 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.0 00 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.0 00 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.0 00 4.3 U 4.8 U 4.3 U 5.	Jichloropropane	µg/kg	23,000	4.3 ∪	4.8 U	4.3 ∪	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 U	531)	5411
μg/kg 17,000,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg — 4.3 U 4.8 U 4.3 U 5.8 U μg/kg — 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 100,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 7.20,000 4.3 U 4.8 U 4.3 U 5.8 U	Vichlorobenzene	µg/kg		4.3 U	4.8 U	4.3 U	5.8 U	6.4 U	5.7 U	5.10	5.4 U	5.8 ∪	5.3 U	5.4 U
μg/kg — 4.3 U 4.8 U 4.3 U 5.8 U e(MIBK) μg/kg — 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,0000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.40 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 7.20,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 5.40 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U μg/kg 1,200,000 4.3 U 4.8 U 4.3 U	Jichlorobenzene	µg/kg	17,000,000	4.3 U	4.8 U	4.3 ∪	5.8 U	6.4 U	5.7 U	5.10	5.4 U	5.8 U	5311	5411
Hg/kg — 4.3 U 4.8 U 4.3 U 5.8 U e(MIBK) Hg/kg 100,000,000 17 U 19 U 17 U 23 U ne Hg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 16,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U e Lg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U e Lg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U e Lg/kg 7.20,000 4.3 U 4.8 U 4.3 U 5.8 U <	tanone (MEK)	µg/kg	1	4.3 U	4.8 U	4.3 ∪	5.8 ∪	6.4 U	5.7 U	5.1 U	5.4 ∪	5.8 ∪	5.3 U	5.4 U
High	xanone	µg/kg	1	4.3 ∪	4.8 U	4.3 U	5.8 U	6.4 ∪	5.7 U	5.10	5.4 U	5.8 U	5.3 U	5.411
Hg/kg 100,000,000 17 U 19 U 17 U 23 U ne Hg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 3,000,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 100,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U hg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne hg/kg	thyl-2-Pentanone (MIBK)	µg/kg		4.3 ∪	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.10	5.4 U	5.8 ∪	5.3 U	5.4 U
ne µg/kg 1,600 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 3,000,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 100,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 540 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 4.3 U 4.8 U 4.3 U 5.8 U </td <td>one</td> <td>µg/kg</td> <td>100,000,000</td> <td>17 U</td> <td>19 U</td> <td>17 U</td> <td>23 U</td> <td>25 U</td> <td>23 U</td> <td>20 U</td> <td>22 U</td> <td>23 U</td> <td>210</td> <td>22 U</td>	one	µg/kg	100,000,000	17 U	19 U	17 U	23 U	25 U	23 U	20 U	22 U	23 U	210	22 U
Highestary 100,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 100,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 15,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 15,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 120,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 120,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 120,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 120,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary 130,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary Highestary 130,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary Highestary 130,000 4.3 U 4.8 U 4.3 U 5.8 U Highestary Hi	ene	µg/kg	1,600	4.3 ∪	4.8 U	4.3 ∪	5.8 ∪	6.4 ∪	5.7 U	5.10	5.4 U	5.8 ∪	5.3 ∪	5.4 U
µg/kg 100,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg <td< td=""><td>iodichloromethane</td><td>ng/kg</td><td>3,000,000</td><td>4.3 ∪</td><td>4.8 U</td><td>4.3 U</td><td>5.8 ∪</td><td>6.4 ∪</td><td>5.7 U</td><td>5.10</td><td>5.4 U</td><td>5.8 ∪</td><td>5.3 ∪</td><td>5.4 U</td></td<>	iodichloromethane	ng/kg	3,000,000	4.3 ∪	4.8 U	4.3 U	5.8 ∪	6.4 ∪	5.7 U	5.10	5.4 U	5.8 ∪	5.3 ∪	5.4 U
µg/kg 15,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg </td <td>oform</td> <td>hg/kg</td> <td>100,000</td> <td>4.3 U</td> <td>4.8 ∪</td> <td>4.3 ∪</td> <td>5.8 U</td> <td>6.4 U</td> <td>5.7 U</td> <td>5.1 U</td> <td>5.4 U</td> <td>5.8 U</td> <td>5.3 ∪</td> <td>5.4 U</td>	oform	hg/kg	100,000	4.3 U	4.8 ∪	4.3 ∪	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 U	5.3 ∪	5.4 U
µg/kg 720,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 640 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U	omethane	ng/kg	15,000	4.3 ∪	4.8 U	4.3 ∪	5.8 U	6.4 ∪	5.7 U	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 U
µg/kg 640 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.8 U 4.3 U 5.8 U e µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3	on disulfide	ng/kg	720,000	4.3 U	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 U	5.3 ∪	5.4 U
Hg/kg 210,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 540 4.3 U 4.8 U 4.3 U 5.8 U e Hg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U mene) Hg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 4.3 U 4.	on tetrachloride	hg/kg	640	4.3 ∪	4.8 U	4.3 U	5.8 ∪	6.4 ∪	5.7 U	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 ∪
Hg/kg 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg 540 4.3 U 4.8 U 4.3 U 5.8 U e Hg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U ne Hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U mene) Hg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U Hg/kg - 4.3 U 4.8 U 5.8 U Hg/kg	openzene	hg/kg	210,000	4.3 ∪	4.8 U	4.3 ∪	5.8 ∪	6.4 U	5.7 U	5.1 U	5.4 U	5.8 U	5.3 ∪	5.4 ∪
pig/kg 540 4.3 U 4.8 U 4.3 U 58 U e µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U ne µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U mene) µg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4	oemane	hg/kg		4.3 U	4.8 U	4.3 U	5.8 ∪	6.4 ∪	2.6 J	5.1 U	5.4 U	5.8 U	5.3 U	5.4 U
e µg/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 1,200,000 4.3 U 4.8 U 4.3 U 5.8 U 5.8 U ng/kg 2,100 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U nmene) µg/kg 400,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg — 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 6,800,000 4.3 U 4.8 U 4.3 U 5.8 U ng/kg 6,8 U 4.3 U 5.8 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OIOT III	hg/kg	540	4.3 U	4.8 U	4.3 ∪	5.8 U	6.4 ∪	5.7 U	5.1 U	5.4 U	5.8 U	5.3 U	5.4 U
e µg/kg 1,200,000 4,3 U 4,8 U 4,3 U 5,8 U ne µg/kg 2,100 4,3 U 4,8 U 4,3 U 5,8 U ne µg/kg 1,300,000 4,3 U 4,8 U 4,3 U 5,8 U mene) µg/kg 400,000 4,3 U 4,8 U 4,3 U 5,8 U µg/kg - 4,3 U 4,8 U 4,3 U 5,8 U µg/kg - 4,3 U 4,3 U 5,8 U µg/kg 8,800,000 4,3 U 4,3 U 5,8 U µg/kg 8,800,000 4,3 U 4,8 U 4,3 U 5,8 U	ometnane	hg/kg		4.3 ∪	4.8 U	4.3 U	5.8 U	6.4 ∪	5.7 U	5.1 U	5.4 U	5.8 U	5.3 U	5.4 ∪
The High 2,100 4.3 U 4.8 U 4.3 U 5.8 U 1.8	Z-Dichlordethene	ng/kg	1,200,000	4.3 U	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 U
Pg/kg	3-Uichloropropene	µg/kg	2,100	4.3 ∪	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 U
The Hg/kg 1,300,000 4.3 U 4.8 U 4.3 U 5.8 U* The Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U The Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U The Hg/kg - 4.3 U 4.8 U 4.3 U 5.8 U The Hg/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U The Hg/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U	nexane	ng/kg	;	4.3 ∪	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.1 U	5.4 ∪	5.8 ∪	5.3 ∪	5.4 U
mene) µg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 4.3 U 4.3 U 4.3 U 5.8 U µg/kg - 4.3 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg - 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U	mochloromethane	ng/kg	1,300,000	4.3 ∪	4.8 U	4.3 U	5.8 U*	6.4 U*	5.7 U*	5.1 U*	5.4 U*	5.8 U*	5.3 U*	5.4 U*
нg/kg 4.3 U 4.8 U 4.3 U 5.8 U µg/kg — 4.3 U 4.8 U 4.3 U 5.8 U µg/kg — 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U µg/kg 8,800,000 4.3 U 4.8 U 4.3 U 5.8 U	prodiffuoromethane	ng/kg		4.3 U	4.8 ∪	4.3 U	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 U
mene) µg/kg — 4.3U 4.8U 4.3U 5.8U µg/kg — 4.3U 4.8U 4.3U 5.8U µg/kg 8,800,000 4.3U 4.8U 4.3U 5.8U	enzene	hg/kg	400,000	4.3 U	4.8 ∪	4.3 U	5.8 U	6.4 ∪	5.7 U	5.1U	5.4 ∪	5.8 U	5.3 ∪	5.4 U
Hg/kg 8,800,000 4,3U 4,8U 4,3U 5,8U	pylbenzene (Cumene)	µg/kg		4.3 ∪	4.8 U	4.3 U	5.8 ∪	6.4 U	5.7 U	5.10	5.4 ∪	5.8 ∪	5.3 U	5.4 U
Hg/kg 8,800,000 4.3U 4.8U 4.3U 5.8U	i Acetate	ng/kg		4.3 U	4.8 ∪	4.3 ∪	5.8 ∪	6.4 ∪	5.7 U	5.10	5.4 U	5.8 U	5.3 ∪	5.4 ∪
100KG 1 4211 4211 100KG	I-tert-butyl ether	µg/kg	8,800,000	4.3 U	4.8 ∪	4.3 U	5.8 ∪	6.4 U	5.7 ∪	5.1 U	5.4 U	5.8 ∪	5.3 ∪	5.4 U
1 Heng 4.30 4.30 4.30 5.80	cyclohexane	ng/kg	1	4.3 ∪	4.8 ∪	4.3 ∪	5.8 U	6.4 U	5.7 U	5.1 U	5.4 U	9.8 ∪	5.3 ∪	5.4 ∪

ARCADIS

On-Site Soil Sampling Results - Volatile Organic Compounds GE Morrison Facility Morrison, Illinois Table 3

		Soil Remediation											
		Objectives											
		Inhalation	- 								6000		
Compound	Units	(a)	SB25-11	SB26-6	SB26-11	SB28-28	SB29-42	SB31-10	SB32-32	SB11.5	Ounlicate	CB23.0	CB24.20
Methylene Chloride	µg/kg	24,000	4.3 ∪	4.8 U	4.3 U	5.8 ∪	6411	5711	5.111	5.411	5.8.1	2000	5 4 1 1
Styrene	µg/kg	1,500,000	4.3 ∪	4.8 U	4.3 U	5.81	6411	5711	5.1.0	5.4.5	1184	2000	2 17
Tetrachloroethene	µg/kg	20,000	4.3 U	4.8 U	4.3 U	12.1	6411	5711	110	24.2	0.00	0.5.2	7 - 4
Toluene	µg/kg	650,000	4.3 U	4.8 U	4.3 U	5.811	6411	5711	210	2 - 2		2000	7 - 7
trans-1,2-Dichloroethene	ua/ka	3.100.000	4311	481	1311	1 8 3	11.0	27.1		2 3	000	25.5	7
trans_1 3_Dichloropropos					ř	2000	7.4.0	0,'6	0 - 7	0.40	5.8 U	5.3 U	5.4 U
יייייייייייייייייייייייייייייייייייייי	ng/kg	2,100	4.3 ∪	4.8 U	4.3 U	5.8 U	6.4 ∪	5.7 U	5.1 ∪	5.4 U	5.8 ∪	5.3 ∪	5.4 ∪
Inchloroethene	µg/kg	8,900	4.3 ∪	4.8 U	4.3 ∪	5.8 ∪	6.4 U	5.7 U	1.13	4.0.4	3.1.1	5311	5411
Trichlorofluoromethane	µg/kg	•	4.3 ∪	4.8 ∪	4.3 ∪	5.8.0	6411	5711	5.111	5.4.11	5.811	5311	2 4 1
Vinyl chloride	µg/kg	1,100	4.3 U	4.8 ∪	4.3 ∪	5811	6411	5711	5111	17.4	0 4	0000	7 1
Xylenes, Total	µg/kg	320,000	13.0	14 U	1311	17.11	1911	1711	2 = 4	2 2	100	2,30	1.0
Notes.									2	202	000	0 0	٥

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table B - Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties

- = Indicates there is no established Remediation Objective for this compound

* = Laboratory control sample or laboratory conrol sample duplicate exceeds

the control limits

B = Analyte was detected in the associated method blank

E = Result exceeded calibration range

J = Estimated concentration

Illinois EPA = Illinois Environmental Protection Agency

µg/kg = Micrograms per kilogram

U = Compound not detected

VOCs = Volatile organic compounds

10 of 12

Table 3
On-Site Soil Sampling Results - Volatile Organic Compounds
GE Morrison Facility
Morrison, Illinois

And the second s		Soil Remediation					
The state of the s		Objectives					
Compound	Units	Inhalation (a)	BG01-5	BC01.9	BG01-8	2000	0
VOCs (SW846 8260)			12/28/2011	12/28/2011	12/28/2011	12/28/2011	12/28/2011
1,1,1-Trichloroethane	pg/kg	1,200,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5911
1,1,2,2-Tetrachloroethane	µg/kg		6.1 U	5.8 U	0.0 €	5.8 U	5.9 U
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/kg	quan.	6.1 U	5.8 U	0.09	5.8 U	5.9 U
1,1,2-Trichloroethane	µg/kg	1,800,000	6.1 U	5.8 U	0.0 U	5.8 ∪	5.9 ∪
1,1-Dichloroethane	µg/kg	1,700,000	6.1 U	5.8 U	0.00	5.8 U	5.9 U
1,1-Dichloroethene	µg/kg	470,000	6.1 U	5.8 ∪	0.00	5.8 U	5.9 U
1,2,4-Trichlorobenzene	µg/kg	3,200,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
1,2-Dibromo-3-chloropropane	µg/kg	17,000	6.1 U	5.8 U	6.0 U	5.8 ∪	5.9 U
1,2-Dibromoethane (EDB)	µg/kg	120	6.1 U	5.8 U	0.0.9	5.8 ∪	5.9 U
1,2-Dichlorobenzene	µg/kg	260,000	6.1 U	5.8 U	6.0 U	5.8 U	5.9 ∪
1,2-Dichloroethane	hg/kg	700	6.1 U	5.8 U	6.0 ∪	5.8 U	5.9 ∪
1,2-Dichloropropane	µg/kg	23,000	6.1 U	5.8 ∪	0.00	5.8 U	5.9 U
1,3-Dichlorobenzene	µg/kg	•	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
1,4-Dichlorobenzene	µg/kg	17,000,000	6.1 U	5.8 U	6.0 U	5.8 ∪	5.9 ∪
2-Butanone (MEK)	hg/kg	1	6.1 U	5.8 U	6.0 U	5.8 ∪	5.9 U
2-Hexanone	µg/kg		6.1 U	5.8 U	0.09	5.8 U	5.9 ∪
4-Methyl-2-Pentanone (MIBK)	µg/kg	-	6.1 U	5.8 U	0.9	5.8 ∪	5.9 U
Acetone	µg/kg	100,000,000	24 U	23 U	24 U	23 U	23 U
Benzene	hg/kg	1,600	6.1 U	5.8 U	6.0 U	5.8 U	5.9 U
Bromodichloromethane	ng/kg	3,000,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 ∪
Bromotorm	hg/kg	100,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
Diometrane	ng/kg	15,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
Carbon disuffide	ng/kg	720,000	6.1 U	5.8 U	6.0 U	5.8 U	5.9 ∪
Calbon tetrachionde	hg/kg	640	6.1 U	5.8 U	0.0 ∪	5.8 ∪	5.9 U
Chicago	hg/kg	210,000	6.1 U	5.8 U	0.0 €	5.8 U	5.9 U
Chioroethane	ng/kg		6.1 ∪	5.8 ∪	6.0 U	5.8 ∪	5.9 ∪
Chlororm	hg/kg	540	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 ∪
Chloromethane	hg/kg		6.1 U	5.8 U	6.0 U	5.8 U	5.9 U
cis-1,2-Dichloroethene	µg/kg	1,200,000	6.1 U	5.8 U	6.0 U	5.8 U	5.9 U
cis-1,3-Dichloropropene	µg/kg	2,100	6.1 U	5.8 U	6.0 U	5.8 U	5.9 U
Cyclonexane	hg/kg		6.1 U	5.8 U	0.0 ∪	5.8 U	5.9 U
Dibromochloromethane	ug/kg	1,300,000	6.1 U*	5.8 U*	0.0*∪	5.8 U*	\$.9 U*
Dichlorodifluoromethane	ng/kg	***************************************	6.1 U	5.8 U	0.0 €	5.8 U	5.9 U
Ethylbenzene	hg/kg	400,000	6.1 U	5.8 ∪	6.0 U	5.8 ∪	5.9 ∪
Isopropylbenzene (Cumene)	hg/kg		6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
Methyl Acetate	ng/kg	-	6.1 U	5.8 U	6.0 U	5.8 ∪	5.9 U
Metnyl-tert-butyl ether	hg/kg	8,800,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
Metnylcyclohexane	ng/kg		6.1 U	5.8 U	6.0 U	5.8 U	5.9 U

On-Site Soil Sampling Results - Volatile Organic Compounds GE Morrison Facility Morrison, Illinois Table 3

		Soil Remediation Objectives					
		Inhalation			BG01-8		
Compound	Units	(a)	BG01-5	BG01-8	Duplicate	BG02-4.5	BG02-8
Methylene Chloride	µg/kg	24,000	6.1 U	5.8 U	6.0 U	5.8 U	
Styrene	µg/kg	1,500,000	6.1 U	5.8 ∪	6.0 ∪	5.8 U	5.9 U
Tetrachloroethene	µg/kg	20,000	6.1 U	5.8 U	6.0 U	5,8 ∪	5.9 U
Toluene	µg/kg	000'059	6.1 U	5.8 U	6.0 U	5.8 ∪	5.9 U
trans-1,2-Dichloroethene	µg/kg	3,100,000	6.1 U	5.8 ∪	6.0 U	5.8 U	5.9 U
trans-1,3-Dichloropropene	µg/kg	2,100	6.1 U	5.8 ∪	6.0 ∪	5.8 U	5.9 U
Trichloroethene	µg/kg	8,900	6.1 U	5.8 ∪	6.0 U	5.8 ∪	590
Trichlorofluoromethane	µg/kg	-	6.1 U	5.8 U	6.0 U	5.8 U	2.9 ∪
Vinyl chloride	µg/kg	1,100	6.1 U	5.8 U	0.09	5.8 U	5.9 ∪
Xylenes, Total	lug/kg	320,000	18 U	18 U	18 U	17.0	18 U

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table B - Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties

-- = Indicates there is no established Remediation Objective for this compound * = Laboratory control sample or laboratory conrol sample duplicate exceeds

the control limits

B = Analyte was detected in the associated method blank

E = Result exceeded calibration range

J = Estimated concentration

Ilfinois EPA = Illinois Environmental Protection Agency

µg/kg = Micrograms per kilogram

U = Compound not detected VOCs = Volatile organic compounds

On-Site Soil Gas Sampling Results GE Morrison Facility Morrison, Illinois Table 5

		Soil Gas R Object	Soil Gas Remediation Objectives (a)							· 11 11 - 11 - 11 11 11 11 11 11 11 11 11				
Compound	Units	Industrial - Table H (5 feet bgs or less)	Industrial - Table I (> 5 feet bgs)	SG1-5	SG1-12	SG2-5	SG2-13	80 80 80 80 80 80 80 80 80 80 80 80 80 8	SG3-13	564.5	SG4-5 Dunlicate	SG4-13	2.50S	865.10
VOCs (TO15)				12/21/2011	12/21/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011	12/22/2011
1,1,1-Trichloroethane	ug/m³	41,000,000	870,000,000	410,000	71,000	63	6.7	550	5.3	1:1	1.6	4	25,000	52,000
1,1,2,2-Tetrachloroethane	ug/m³	1	1	4000 U	680 U	1.4 U	1.4 U	19 U	2.4 ∪	1.4 U	1.4 U	6.1 U	510 U	1,100 U
1,1,2-Trichloroethane	ng/m³	170,000,000	170,000,000	3200 U	540 U	1.1 U	1.1 U	15 U	1.9 U	1.10	1.1 U	4.8 ∪	410 U	860 U
1,1-Dichloroethane	ug/m³	4,200,000	500,000,000	2300 U	1,100	2.8	0.81 U	42	9.8	0.81 U	0.81 U	510	300 €	640 U
1,1-Dichloroethene	ug/m³	1,600,000	160,000,000	8,900	5,500	1.1	0.79 U	11.0	1.7	0.79 U	0.79 U	200	32,000	54,000
1,2-Dichloroethane	ng/m³	810	76,000	2300 U	400 U	0.81 U	0.81 U	110	1.4 U	0.81 U	0.81 U	3.6 ∪	300 ∩	640 ∪
Carbon tetrachloride	ug/m³	1,500	180,000	3600 U	630 U	1.3 U	1.3 U	18 U	2.2 U	1.3 U	1.3 U	5.6 U	470 U	U 066
Chloroform	ng/m³	920	87,000	2800 U	490 U	7.7	U 86.0	23	1.7 U	0.98 U	0.98 ∪	4.3 U	360 ∪	U 077
cis-1,2-Dichloroethene	ng/m³	1,100,000,000	1,100,000,000	2300 U	390 U	0.79 U	0.79 U	120	22	0.79 U	0.79 U	3.5 ∪	300 ∪	620 U
Methylene Chloride	ug/m³	45,000	4,400,000	5000 U	860 U	1.7 U	1.7 U	24 U	3.0 ∪	1.7 U	1.7 U	U 7.7	650 U	1,400 U
Tetrachloroethene	ng/m³	4,000	490,000	7,100	O 089	1.4 U	1.4 U	19 U	2.6	1.4 U	1.4 U	0.09	510 U	1,100 U
trans-1,2-Dichloroethene	ng/m³	510,000	63,000,000	2300 U	390 U	0.79 U	0.79 U	30	1.4 U	0.79 U	0.79 U	3.5 U	300 ח	620 U
Trichloroethene	ng/m³	12,000	1,300,000	6,400	2,500	70	1.1 U	2,000	11	1.1 U	1.1 U	4.8 ∪	940	3,000
Vinyl chloride	ng/m³	4,800	440,000	1500 U	250 U	0.51 U	0.51 U	7.2 U	U 68.0	0.51 U	0.51 U	2.3 U	190 U	400 U
Notes:														ı

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B. Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection and Table I - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion Only

- = Indicates there is no established Remediation Objective for this compound

bgs = Below ground surface

Illinois EPA = Illinois Environmental Protection Agency

ug/m³ = Micrograms per cubic meter

U = Compound was not detected VOCs = Volatile organic compounds

ARCADIS

On-Site Soil Gas Sampling Results GE Morrison Facility Morrison, Illinois Table 5

		Soil Gas Remediation Objectives (a)	emediation ves (a)											
	······································	Industrial - Table H (5 feet bgs or	Industrial - Table I							SG8-10				
Compound	Units	less)	(> 5 feet bgs)	SG6-5	SG6-10	SG7-5	SG7-10	SG8-5	SG8-10	Duplicate	SG9-5	SG10-5	SG11-5	SG12-5
VOCs (T015)				12/22/2011	12/22/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/23/2011	12/28/2011	12/28/2011
1,1,1-Trichloroethane	ug/m³	41,000,000	870,000,000	14,000	19,000	310	4,400	3.1	130	160	1.2	1.1 U	1.5	1.1 U
1,1,2,2-Tetrachloroethane	ng/m³	1	ı	470 U	500 U	11 U	240 U	1.4 U	5.0 ∪	2.7 U	1.4 U	1.4 U	1.4 U	1.4 U
1,1,2-Trichloroethane	ng/m³	170,000,000	170,000,000	370 ∪	400 U	8.7 U	190 U	1.1 U	4.0 U	2.2 U	1.10	1.10	1.10	1.10
1,1-Dichloroethane	ng/m³	4,200,000	500,000,000	280 U	290 U	6.5 U	880	0.81 U	170	200	38	0.81 U	0.81 U	0.81 U
1,1-Dichloroethene	ng/m³	1,600,000	160,000,000	27,000	43,000	069	26,000	0.79 U	240	260	41	0.79 U	0.79 U	0.79 U
1,2-Dichloroethane	ng/m³	810	76,000	280 U	290 U	6.5 U	140 U	0.81 U	2.9 U	1.6 U	0.81 U	0.81 U	0.81 U	0.81 U
Carbon tetrachloride	ug/m³	1,500	180,000	430 U	460 U	10 U	220 ∪	1.3 U	4.6 U	2.5 U	1.3 U	1.3 U	1.3 U	1.3 U
Chloroform	ug/m³	920	87,000	330 U	350 U	7.8 U	170 U	0.98 U	6.2	6.1	2.2	0.98 U	0.98 ∪	0.98 U
cis-1,2-Dichloroethene	ng/m³	1,100,000,000	1,100,000,000	270 U	290 U	7.8	140 U	0.79 U	150	160	32	U 67.0	U 62.0	0.79 U
Methylene Chloride	ug/m³	45,000	4,400,000	290 U	630 U	14 U	310 U	1.7 U	6.3 U	3.5 ∪	3.5	1.7 U	1.7 U	1.7 U
Tetrachloroethene	ug/m³	4,000	490,000	460 U	490 U	110	240 U	1.4 U	4.9 U	2.7 U	1.4 U	1.4 U	1.4 U	1.4 U
trans-1,2-Dichloroethene	ng/m³	510,000	63,000,000	270 U	290 U	6.3 U	140 U	0.79 U	19	20	2.5	0.79 U	0.79 U	0.79 U
Trichloroethene	ng/m ₃	12,000	1,300,000	470	740	120	190	1.1 U	100	80	72	1.10	1.1	1.2
Vinyl chloride	ug/m³	4,800	440,000	170 U	190 U	4.10	O 06	0.51 U	1.9 U	1.0 U	48	0.51 U	0.51 U	0.51 U
Notes:												-		

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection and Table I - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion Only

- = Indicates there is no established Remediation Objective for this compount

bgs = Below ground surface

Illinois EPA = Illinois Environmental Protection Agency

ug/m³ = Micrograms per cubic meter

U = Compound was not detected VOCs = Volatile organic compounds

Table 5
On-Site Soil Gas Sampling Results
GE Morrison Facility
Morrison, Illinois

		Soil Gas R Object	Soil Gas Remediation Objectives (a)			
		Industrial - Table H	Industrial -			
Compound	Units	(5 feet bgs or less)	Table (SG12-5 Dunlicate	SG13.5	Trin Blank
VOCs (T015)				12/28/2011] ~	12/28/2011
1,1,1-Trichloroethane	ng/m³	41,000,000	870,000,000	1.1 U	1.1 U	1.1 U
1,1,2,2-Tetrachloroethane	ug/m³	1	ı	1.4 U	1.4 ∪	1.4 U
1,1,2-Trichloroethane	ng/m³	170,000,000	170,000,000	1.1 U	1.1 U	1.1 U
1,1-Dichloroethane	ng/m³	4,200,000	500,000,000	0.81 U	0.81 U	0.81 U
1,1-Dichloroethene	ng/m³	1,600,000	160,000,000	0.79 U	0.79 U	0.79 U
1,2-Dichloroethane	ng/m³	810	76,000	0.81 U	0.81 U	0.81 U
Carbon tetrachloride	ug/m³	1,500	180,000	1.3 U	1.3 U	1.3 U
Chloroform	ug/m³	920	87,000	U 86.0	0.98 ∪	0.98 ∪
cis-1,2-Dichloroethene	ng/m³	1,100,000,000	1,100,000,000	0.79 U	U 62.0	0.79 U
Methylene Chloride	ug/m³	45,000	4,400,000	1.7 U	1.7 U	1.7 U
Tetrachloroethene	ug/m³	4,000	490,000	1.4 U	1.4 U	1.4 U
trans-1,2-Dichloroethene	ug/m³	510,000	63,000,000	0.79 U	0.79 U	0.79 U
Trichloroethene	ng/m³	12,000	1,300,000	1.2	1.10	1.10
Vinyl chloride	ug/m³	4,800	440,000	0.51 U	0.51 U	0.51 U
Notes:						-

Notes:

Bold indicates a detection of the noted compound.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection and Table I - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion Only

= Indicates there is no established Remediation Objective for this compount

bgs = Below ground surface

Illinois EPA = Illinois Environmental Protection Agency

 ug/m^3 = Micrograms per cubic meter U = Compound was not detected

Table 6 Off-Site Grab Groundwater Sampling Results GE Morrison Facility Morrison, Illinois

	T	Groundwater	T						
		Remediation			SB40-12				
		Objectives (a)	SB-35-20	SB40-12	Duplicate	SB42-15	SB43-24	SB44-24	SB-45-18
Compound	Units	Residential	2/14/2012	2/14/2012	2/14/2012	2/15/2012	2/15/2012	2/15/2012	8/2/2012
VOCs (SW846 8260)	Units	Residential	211412012	2/14/2012	2/14/2012	2/15/2012	2/15/2012	2/15/2012	8/2/2012
1,1,1-Trichloroethane	μg/l	1,300,000	850	5.0 U	5.0 U	5.0 U	5.0 U	11	5.0 ∪
1,1,2,2-Tetrachloroethane	ug/l	1,300,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1.2-Trichloroethane	µg/l	4,400,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	-	4,400,000	50 U	5.0 U	5.0 U				
1,1-Dichloroethane	µg/l	750,000	67	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1-Dichloroethene	ug/l	61.000	690	5.0 U	5.0 U	1.5 J 5.0 U	5.0 U 5.0 U	4.4 J 15	5.0 U 5.0 U
1,2,4-Trichlorobenzene	µg/l	35,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	7.8 B*
1,2-Dibromo-3-chloropropane	µg/l	29	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	7.8 B" 5.0 U
1,2-Dibromoethane (EDB)	µg/l	73	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene		160,000	50 U						
1,2-Dichloroethane	µg/l			5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	µg/l	500	13 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
	µg/l	670	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	µg/l	70,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
	μg/l	79,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Butanone (MEK) 2-Hexanone	μg/l	220,000,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	µg/l		50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	µg/l	4 000 000 000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	µg/l	1,000,000,000	200 U	20 U	20 U	20 U	20 U	20 U	20 U
	µg/l	410	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	µg/l	6,700,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromoform	µg/l	170,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	µg/l		50 U*	5.0 U*	5.0 U*	5.0 U*	5.0 ∪*	5.0 U*	5.0 U
Carbon disulfide	μg/l	170,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪
Carbon tetrachloride	µg/l	52	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chlorodenzene	µg/l	130,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪
Chloroethane	μg/l		50 U	5.0 Ú	5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U
Chloroform	µg/l	170	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane	μg/l		50 U	5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	μg/l	3,500,000	14 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	38
cis-1,3-Dichloropropene	µg/l	420	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Cyclohexane	µg/l		50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	µg/l	6,800	50 U	5.0 Ü	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	µg/l	6,800	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	μg/l	1,300	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	μg/l	6,200	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl Acetate	μg/t		50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	µg/l		50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	µg/l	12,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl-tert-butyl ether	µg/l	30,000,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	µg/l	310,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	µg/l	260	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	µg/l	530,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,2-Dichloroethene	µg/l	58,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.98 J
trans-1,3-Dichloropropene	µg/l	420	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	μg/l	1,100	170	5.0 U	5.0 U	5.0 U	5.0 U	8.5	5.0 U
Trichlorofluoromethane	μg/l "	62,000	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U*
Vinyl chloride	µg/l	65	50 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Xylenes, Total	µg/l	96,000	150 U	15 U	15 U	15 U	15 U	15 U	15 U

Notes:

Bold indicates a detection of the noted compound.

- (a) Illinois EPA Section 742, Appendix B, Table I Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route- Diffusion Only
- -- = Indicates there is no established Remediation Objective for this compound
- * = LCS or LCSD exceeds the control limits
- B = Analyte was detected in the associated method blank

Illinois EPA = Illinois Environmental Protection Agency

J = Estimated concentration

μg/l = Micrograms per liter

U = Compound not detected

UJ = Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.

Table 6 Off-Site Grab Groundwater Sampling Results GE Morrison Facility Morrison, Illinois

		Groundwater	l						
		Remediation							SB51-16
		Objectives (a)	SB46-18	SB47-11	SB48-15.5	SB49-24	SB50-17	SB51-16	Duplicate
Compound	Units	Residential	8/2/2012	8/2/2012	8/2/2012	8/3/2012	8/3/2012	8/3/2012	8/3/2012
VOCs (SW846 8260)									
1,1,1-Trichloroethane	µg/l	1,300,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	µg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	µg/l	4,400,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	µg/l	750,000	5.0 U	5.0 U	5.0 U	5.0 U	6.8	5.0 U	5.0 U
1,1-Dichloroethene	µg/l	61,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪	5.0 U
1,2,4-Trichlorobenzene	µg/l	35,000	5.0 U*	1.1 JB*	5.0 U*	5.0 U*	5.0 U*	0.55 JB*	0.45 JB*
1,2-Dibromo-3-chloropropane	μg/l	29	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (EDB)	μg/l	73	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	µg/l	160,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	µg/l	500	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	µg/l	670	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪	5.0 U
1,3-Dichlorobenzene	µg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	μg/l	79,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Butanone (MEK)	μg/l	220,000,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	µg/l		5.0 U*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	µg/l		5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	μg/l	1,000,000,000	20 ∪*	20 U	20 U	20 U	20 U	20 U	20 U
Benzene	µg/l	410	5.0 U	5.0 U	5.0 U	5.0 Ų	5.0 U	5.0 U	5.0 U
Bromodichloromethane	µg/l	6,700,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromoform	µg/l	170,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	µg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪	5.0 U
Carbon disulfide	µg/l	170,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ∪	5.0 U
Carbon tetrachloride	μg/l	52	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	μg/l	130,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	µg/l		5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	µg/l	170	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane	µg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	μg/l	3,500,000	5.0 U	5.0 U	5.0 U	5.0 U	3.7 J	5.0 U	5.0 U
cis-1,3-Dichloropropene	µg/l	420	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Cyclohexane	μg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	μg/l	6,800	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 Ü
Dichlorodifluoromethane	μg/l	6,800	5.0 Ü	5.0 U	5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U
Ethylbenzene	μg/l	1,300	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	μg/l	6,200	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 Ü
Methyl Acetate	μg/l		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	µg/l		5.0 U	5.0 U	5:0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	μg/l	12,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl-tert-butyl ether	μg/l	30,000,000	5.0 U	5.0 ∪	5.0 U	5.0 Ü	5.0 U	5.0 U	5.0 U
Styrene	µg/l	310,000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	μg/l	260	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	μg/l	530,000	5.0 U	5.0 U	5.0 ∪	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,2-Dichloroethene	µg/l	58,000	5.0 U	5.0 U	5.0 U	5.0 U	1.0 J	5.0 U	5.0 U
trans-1,3-Dichloropropene	µg/l	420	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	μg/l	1,100	5.0 U	5.0 U	5.0 U	5.0 U	4.1 J	5.0 U	5.0 U
Trichlorofluoromethane	μg/l	62,000	5.0 U	5.0 U*	5.0 U*	5.0 U*	5.0 U*	5.0 U*	5.0 ∪*
Vinyl chloride	μg/l	65	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Xylenes, Total	μg/l	96,000	15 U	15 U	15 U	15 U	15 U	15 U	15 U

Notes:

Bold indicates a detection of the noted compound.

- (a) Illinois EPA Section 742, Appendix B, Table I Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route- Diffusion Only
- -- = Indicates there is no established Remediation Objective for this compound
- * = LCS or LCSD exceeds the control limits
- B = Analyte was detected in the associated method blank

Illinois EPA = Illinois Environmental Protection Agency

J = Estimated concentration

µg/l = Micrograms per liter

U = Compound not detected

UJ = Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.

Table 6 Off-Site Grab Groundwater Sampling Results GE Morrison Facility Morrison, Illinois

	1	Groundwater	1	<u> </u>
		Remediation	l	
		Objectives (a)	MW10 (5-9)	MW10 (69-74)
Compound	Units	Residential	10/30/2012	10/31/2012
VOCs (SW846 8260)	Onica	Nesidelitial	10/30/2012	10/01/2012
1.1.1-Trichloroethane	µg/l	1,300,000	11	5.0 U
1,1,2,2-Tetrachloroethane	µg/l	1,500,000	5.0 U	5.0 U
1.1.2-Trichloroethane	μg/l	4,400,000	5.0 U	5.0 U
1.1,2-Trichloro-1,2,2-trifluoroethane	µg/l	4,400,000	5.0 U	5.0 U
1,1-Dichloroethane	µg/l	750,000	22	5.0 U
1.1-Dichloroethene	µg/l	61,000	5.0 U	5.0 U
1,2,4-Trichlorobenzene	µg/l	35,000	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	µg/l	29	5.0 U	5.0 U
1,2-Dibromoethane (EDB)	µg/l	73	5.0 U	5.0 U
1,2-Dichlorobenzene		160,000	5.0 U	5.0 U
1.2-Dichloroethane	µg/l	500	5.0 U	5.0 U
<u></u>	µg/l	670	5.0 U	5.0 U
1,2-Dichloropropane 1,3-Dichlorobenzene	µg/l		5.0 U	5.0 U
1,4-Dichlorobenzene	µg/l	70,000		5.0 U
2-Butanone (MEK)	µg/l	79,000 220,000,000	5.0 U 5.0 U	5.0 U
	µg/l			
2-Hexanone	µg/l		5.0 U	5.0 U
4-Methyl-2-Pentanone (MIBK)	μg/l		5.0 U	5.0 U
Acetone	μg/l	1,000,000,000	20 U	20 U
Benzene	µg/l	410	5.0 U	5.0 U
Bromodichloromethane	µg/l	6,700,000	5.0 U	5.0 U
Bromoform	µg/l	170,000	5.0 U	5.0 U
Bromomethane	μg/l		5.0 U	5.0 U
Carbon disulfide Carbon tetrachloride	µg/l	170,000	5.0 U	5.0 U
	µg/l	52	5.0 U	5.0 U
Chlorobenzene	µg/l	130,000	0.91 J	5.0 U
Chloroethane	µg/l		5.0 U	5.0 U
Chloroform	µg/l	170	5.0 U	5.0 U
Chloromethane	μg/l		5.0 U	5.0 U
cis-1,2-Dichloroethene	µg/l	3,500,000	62	5.0 U
cis-1,3-Dichloropropene	µg/l	420	5.0 U	5.0 U
Cyclohexane	µg/l		5.0 U	5.0 U
Dibromochloromethane	µg/l	6,800	5.0 U	5.0 U
Dichlorodifluoromethane	µg/l	6,800	5.0 U	5.0 ∪
Ethylbenzene	µg/l	1,300	5.0 U	5.0 ∪
Isopropylbenzene (Cumene)	µg/l	6,200	5.0 U	5.0 U
Methyl Acetate	µg/l		5.0 U	5.0 U
Methylcyclohexane	µg/l		5.0 U	5.0 U
Methylene Chloride	µg/l	12,000	5.0 U	5.0 U
Methyl-tert-butyl ether	µg/l	30,000,000	5.0 U	5.0 U
Styrene	µg/l	310,000	5.0 U	5.0 ∪
Tetrachloroethene	µg/l	260	5.0 U	5.0 U
Toluene	µg/l	530,000	5.0 U	5.0 U
trans-1,2-Dichloroethene	µg/l	58,000	5.0 ∪	5.0 U
trans-1,3-Dichloropropene	µg/l	420	5.0 U	5.0 ∪
Trichloroethene	µg/l	1,100	13	5.0 U
Trichlorofluoromethane	µg/l	62,000	5.0 U	5.0 U
Vinyl chloride	µg/l	65	7.9	5.0 U
Xylenes, Total Notes:	μg/i	96,000	15 U	15 U

Notes:

Bold indicates a detection of the noted compound.

- (a) Illinois EPA Section 742, Appendix B, Table I Tier 1
 Groundwater Remediation Objectives for the Indoor Inhalation
 Exposure Route- Diffusion Only
- -- = Indicates there is no established Remediation Objective for this compound
- * = LCS or LCSD exceeds the control limits
- B = Analyte was detected in the associated method blank

Illinois EPA = Illinois Environmental Protection Agency

J = Estimated concentration

μg/l = Micrograms per liter

U = Compound not detected

UJ = Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.

Table 8 Residential and Commercial Sump Sample Results GE Morrison Facility Morrison, Illinois

	Groundwater		Property ID:	801 W. Morris	805 W. Morris	807 W. Morris	811 W. Morris	903 W. Morris
Constituent	Remediation		Location ID:	801-SUMP	805-SUMP	807-SUMP	811-SUMP	903-SUMP
VOCs (114/1)	Objectives (a)	Onits	Date Collected:	03/08/12	03/07/12	03/07/12	03/13/12	03/08/12
1,1,1,2-Tetrachloroethane		na/L		10	10	10	10	10
1,1,1-Trichloroethane	200	J/bn		10	10	10	10	10
1,1,2,2-Tetrachloroethane		ng/L		10	10	1.0	10	10
1,1,2-trichloro-1,2,2-trifluoroethane		ng/L		0,	10	10	10	10
1,1,2-Trichloroethane	5	7/6n		1.0	10	Πι	10	10
1,1-Dichloroethane	200	ng/L		10	10	10	10	10
1,1-Dichloroethene	7	l ug/L		10	10	1 U	10	1.0
1,1-Dichloropropene	1	l ug/L		10	10	10	1 U	10
1,2,3-Trichlorobenzene	1	ng/L		10	10	10	10	10
1,2,3-Trichloropropane	-	ng/L		10	10	10	10	1.0
1,2,4-Trichlorobenzene	70	ng/L		10	10	٦١	10	10
1,2,4-Trimethylbenzene	1	ng/L		10	10	10	2.3	10
1,2-Dibromo-3-chloropropane	0.2	ng/L		10	10	10	10	10
1,2-Dibromoethane	0.05	ng/L		10	1 U	10	10	10
1,2-Dichlorobenzene	009	7/Bn		10	10	10	10	1 0
1,2-Dichloroethane	5	ng/L		2	1 U	1 0	1 U	۸ı
1,2-Dichloroethene (total)	170	ng/L		10	10	10	10	٩n
1,2-Dichloropropane	5	ug/L		10	10	10	10	10
1,3,5-Trimethylbenzene	•	ug/L		10	1C	10	0.47 J	10
1,3-Dichlorobenzene		ug/L		10	10	10	10	10
1,3-Dichloropropane	,	ng/L		10	10	10	10	10
1,4-Dichlorobenzene	75	ng/L		10	10	J U	10	10
1,4-Dioxane	•	ug/L		50 U	50 U	20 ∩	50 U	O 09
2,2-Dichloropropane	•	ug/L		10	10	10	10	10
2-Butanone	•	ug/L		5.0	13	5 U	5 U	5 U
2-Chloroethylvinylether	-	ng/L		1 O	10	10	1 U	10
2-Chlorotoluene	•	ug/L		10	1 U	1 U	10	10
2-Hexanone	•	ug/L		5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	1	ng/L		10	10	10	10	10
4-Methyl-2-pentanone	-	ng/L		5 U	5.0	50	5.0	5 U
Acetone	6300	ng/L		2.3 J	20	12	13	5.0
Benzene	5	ng/L		10	10	10	0.74 J	10
Bromobenzene	,	ng/L		10	10	10	10	10
Bromochloromethane	•	ng/L		15	10	10	10	10
Bromodichloromethane	0.2	ng/L		10	10	10	10	10
Bromoform		ng/L		10)	10	10	10
Bromomethane	-	ug/L		10	10	10	10	10
Carbon Disulfide	700	ng/L		10	10	10	10	10
Carbon Tetrachloride	5	ng/L		10	1 U	10	10	10
Chlorobenzene	100	ng/L	-	10	10	10	10	10
Chloroethane	•	ng/L		10	10	10	10	10
Chloroform	0.2	ng/L		10	10	10	10	10
Chloromethane		ng/L		10	10))	10	10
cis-1,2-Dichloroethene	70	ng/L		2	10	10	10	10
cis-1,3-Dichloropropene	γ	ng/L		10	10	10	10	10
Cyclohexane	-	ng/L	-	10	10	10	10	10
		ı						

Residential and Commercial Sump Sample Results GE Morrison Facility Morrison, Illinois Table 8

	Groundwater		Property ID:	801 W. Morris	805 W. Morris	807 W. Morris	811 W. Morris	903 W. Morris
Constituent	Remediation		Location ID:	801-SUMP	805-SUMP	807-SUMP	811-SUMP	AWNS-206
	Objectives (a)	Units	Date Collected:	03/08/12	03/07/12	03/07/12	03/13/12	03/08/12
VOCs (ug/L)								
Dibromochloromethane	140	ng/L		10	10	10	10	110
Dibromomethane	-	ng/L		1.0	10	10	10	1 0
Dichlorodifluoromethane	•	ng/L		10	10	7	10	10
Ethylbenzene	700	ng/L		10	10	10	0.84 J	10
Hexachlorobutadiene	•	ng/L		10	10	10	J.	10
lodomethane		T/6n		10	10	10	10	10
Isobutanol	-	ng/L		50 U	20 U	50 U	20 U	O 05
Isopropylbenzene	,	ng/L		10	J 1	10	10	10
m&p-Xylene	10000	ng/L		10	10	10	3.7	10
Methyl acetate		7/6n		10	5.1	10	10	110
Methyl tert-butyl ether	20	T/6n		1 U	10	10	10	110
Methylcyclohexane	ŧ	T/6n		10	10	10	10	n١
Methylene Chloride	ક	7/gn		10	10	10	1.0	10
Naphthalene	140	ng/L		10	10	10	1	10
n-Butylbenzene	-	ng/L		10	1 01	10	10	٩١
n-Propylbenzene	•] ng/L		10	۱n	10	10	n١
o-Xylene	10000	ng/L		1 U	10	10	2	10
p-Isopropyltoluene	-	ng/L		1 U	10	10	10	10
sec-Butylbenzene	-	ng/L		10	10	10	10	٦١.
Styrene	100	ng/L		10	٦١	10	10	10
tert-Butylbenzene	-	J/Bn		1.0	10	10	10	٦١
Tetrachloroethene	5	ng/L		10	10	10	10	٦n
Tetrahydrofuran		ng/L		14 U	38	14 U	3.8 J	14 U
Toluene	1000	l ng/L		10	0.20 J	10	4	٩١
trans-1,2-Dichloroethene	100	ng/L		1 U	10	10	10	10
trans-1,3-Dichloropropene	1	ng/L		10	10	10	10	10
Trichloroethene	5	7/6n		10	10	10	10	٦١
Trichlorofluoromethane	-	ng/L		10	10,	10	10	10
Vinyl Acetate	2000	T/Bn	٠	1.0	10	10	10	٩١
Vinyl Chloride	2	J/gn		10	10	10	10	10
Xylenes (total)	10000	l ug/L		1 U	10	10	5.8	10
Notes:								

Bold indicates a detection of the noted compound.

(a) Illinois EPA Section 742, Appendix B, Table I - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route- Diffusion Only - = Indicates there is no established Remediation Objective for this compound Illinois EPA = Illinois Environmental Protection Agency

J = Estimated concentration

NA = Not available

ug/L = Micrograms per liter U = Compound not detected VOCs = Volatile organic compounds

ARCADIS

Table 9

Non-Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	Occidental Company	Objectives						903 W. Mon	903 W. Morris Street - Commercial	ommercial				
	Veilleulation (110(r	l Oujecuves	Parcel Tax ID:						01813276002					
	(cull/fin)		Building Construction:					Baseme	Basement and Crawl Space	Space				
	Commercial	Commercial Commercial	Location ID:	903-IAB-1	903-IAB-1	903-IAB-1	903-IAB-1	903-IAB-1	903-IAB-2	903-IAB-2	903-IAB-2	903-IAB-2	903-IAB-2	903-IAB-2
	Soil Gas (<5 feet) (a)	Indoor Air (b)	Area of Building: Date Collected:	Basement 03/09/12	Basement 12/06/12	Basement 03/27/13	Basement 06/25/13	Basement 09/23/13	Basement 03/09/12	12/06/12	Basement 03/27/13	Basement 06/25/13	Basement 09/23/13	Basement 01/30/14
Volatile Organics Low-Level (ug/m3)	evel (ug/m3)													
1,1,1-Trichloroethane	41,000,000	7,300		0.22 U	7.00	0.55	0.87	0.78	0.22 U	0.68	0.55	1.	0.7	0.79
1,1,2,2-Tetrachloroethane	AN	ΑN		0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	O 690'O
1,1,2-Trichloroethane	170,000,000	29		0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.055 U
1,1-Dichloroethane	4,200,000	730		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.04 U
1,1-Dichloroathene	1,600,000	290		0.16 U	0.43	0:30	0.38	0.16 U	0.16 U	0.53	0,21	0.33	0.16 U	0.49
1,2-Dichloroethane	810	0.16		0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.081 U
Carbon Tetrachloride	1,500	99'0		0.44	0.46	0.47	0.47	99.0	0.36	0.43	0.54	.0.91	0.63	0.44
Chloroform	920	0.18		0.2 U	0.2 U	0.47	0.31	0.22	0.2 U	0.51	0.2	0.47	0.36	0.16
cis-1,2-Dichloroethene	1,100,000,000	Ā		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.35	0.18	0.16 U	0.04 ∪
Methylene Chloride	45,000	410		1.4 U	1.4 U	1.9	1.4 U	1.4 U	1.4	1.4 U	1.4 U	1.4 U	1.4 U	0.45
Tetrachloroethene	4,000	16		0.27 U	0.27 U	0.27 U	0.57	0.27 U	0.27 U	0.27 U	0.27 U	99.0	0.27 ∪	0.068 U
trans-1,2-Dichloroethene	510,000	88		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.04 U
Trichloroethene	12,000	-		0.21 U	0.21 U	0.39	0.27	0.57	0.21 U	0.21 U	0.39	0.36	0.4	0.14
Vinyl Chloride	4,800	0.93		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.051 U
A C - 4		,						,					l	

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater
Remediation

Objectives for the Indoor Inhalation Exposure Route- Diffusion and Advection (b) Indoor Air Remediation Objectives [] = Duplicate values

Illinois EPA = Illinois Environmental Protection Agency

ug/m3 = Micrograms per cubic meter U = Compound not detected

Page 2 of 3

Table 9
Non-Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility Morrison, Illinois

	Domodiation	Objections						903 W. M	903 W. Morris Street - Commercial	mmercial				
	hemediadol Objectives	i Objectives	Parcel Tax ID:						01813276002					
	Sp.	, land	Building Construction:					Baset	Basement and Crawl Space	Space				
	Commercial	Commercial	Location ID: 903	903-SSP-1	903-SSP-1	903-SSP-1R	903-SSP-1 903-SSP-1R 903-SSP-1R 903-SSP-1R	903-SSP-1R	903-SSP-2	903-SSP-2	903-SSP-2R	903-SSP-2R	903-SSP-2 903-SSP-2R 903-SSP-2R 903-SSP-2R	903-SSP-2R
	Soil Gas (<5	Indoor Air	Area of Building: Below Bsmt,	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt. Below Bsmt. Below Bsmt. Below Bsmt.	Below Bsmt.
Volatile Organics Low-Level (ug/m3)	evel (ug/m3)	(a)	Date Conected.	3	73 (00/7)	01/67/00	0/20/2013	9/23/2013	00/09/12	71/00/71	01/67/00	00/50/13	09/23/13	01/30/14
						4,300 [3,800]	4,300 [3,800] 4,600 [5,000] 7,200 [7,100]	7,200 [7,100]			55	21	24	21
1,1,1-Trichloroethane	41,000,000	7,300		340	4,600				150 [170]	160 [330]				
1,1,2,2-Tetrachloroethane	NA	NA		2.7 U	82 U	120 U [55 U]	32 U [33 U]	56 U [55 U]	1.4 U [1.4 U]	2.1 U [3.2 U]	1.4 U	1.4 U	1.4 U	1.4 U
1,1,2-Trichloroethane	170,000,000	29		2.2 ∪	65 U	92 U [44 U]	25 U [26 U]	44 U [44 U]	1.1 U [1.1 U]	1.6 U [2.5 U]	1.10	1.10	1.1 U	1.1 U
1,1-Dichloroethane	4,200,000	730		1.9	51	68 U [53]	48 [53]	[68] 68	0.81 U [0.81 U]	1.2 U [1.9 U]	0.81 U	0.81 U	0.81 U	0.81 U
						3,400 [2,900]	3,400 [2,900] 2,000 [2,200] 6,100 [6,100]	6,100 [6,100]			1.9	4.9	0.79 U	15
1,1-Dichloroethene	1,600,000	290		120	6,100				0.79 U [0.79 U]	1.2 U [1.8 U]				
1,2-Dichloroethane	810	0.16		1.6 U	48 U	68 U [33 U]	19 U [19 U]	33 U [33 U]	33 U [33 U] 0.81 U [0.81 U]	1.2 U [1.9 U]	0.81 U	0.81 U	0.81 U	0.81 U
Carbon Tetrachloride	1,500	0.68		2.5 U	75 U	110 U [51 U]	29 U [30 U]	51 U [51U]	1.3 U [1.3 U]	1.9 U [2.9 U]	1.3 U	1.3 U	1.3 U	1.3 U
Chloroform	920	0.18		27	28 U	82 U [39 U]	24 [26]	40 [39 N]	[U 86.0] U 86.0	1.5 U [2.2 U]	0.98 U	0.98 U	0.98 U	0.98 U
cis-1,2-Dichloroethene	1,100,000,000	Ą		1.6 U	47 U	67 U [32 U]	IN 61 I N 81	32 U [32 U]	32 U [32 U] 0.79 U [0.79 U]	1.2 U [1.8 U]	0.79 U	0.79 U	0.79 U	0.79 U
Methylene Chloride	45,000	410		3.5 U	100 U	150 U [70 U]	40 U [41 U]	[n o/] n o/	1.7 U [1.7 U]	6.6 [4.0 U]	1.7 U	1.7 U	1.7 U	1.7 U
Tetrachloroethene	4,000	16		7.2	81 U	110 U [55 U]	48 [48]	97 [94]	2.1 [2.4]	2.3 [4.8]	1.4 U	1.4 U	1.4 U	1.4 U
trans-1,2-Dichloroethene	510,000	88		1.6 U	47 U	67 U [32 U]	18 U [19 U]	32 U [32 U]	32 U [32 U] 0.79 U [0.79 U]	1.2 U [1.8 U]	U 67.0	0.79 U	0.79 U	U 6/.0
Trichloroethene	12,000	1		44	780	950 [810]	1,000 [1,100]	1,400 [1,400]	1,000 [1,100] 1,400 [1,400] 1.1 U [1.1 U]	1.6 U [2.5 U]	1.1 U	2.6	1.1 U	6.6
Vinyl Chloride	4,800	0.93		10	31.0	43 U [21 U]	12 U [12 U]	21 U [21 U]	21 U [21 U] 0.51 U [0.51 U] 0.77 U [1.2 U]	0.77 U [1.2 U]	0.51 U	0.51 U	0.51 U	0.51 U
Notes:														

Notes:
Shading indicates a concentration above the Remediation Objective
(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater
Remediation

Objectives for the Indoor Inhalation Exposure Route- Diffusion and Advection (b) Indoor Air Remediation Objectives
[1] = Duplicate values
Illinois EPA = Illinois Environmental Protection Agency

NA = not available ug/m3 = Micrograms per cubic meter U = Compound not detected

Table 9
Non-Residential Indoor Air, Sub-Siab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility Morrison, Illinois

	Remediation Obj (ug/m3)	ectives	Parcel Tax ID: Building Construction:					Ambient Air	nt Air				
	Commercial Soil Gas (<5	Commercial Indoor Air	Location ID:	AMB-1	AMB-1	AMB	AMB	AMB-1	AMB-2	AMB-1	AMB-1	AMB-1	AMB-1
	feet) (a)	(a)	Date Collected:	03/07/12	03/09/12	03/13/12	03/14/12	12/04/12	12/06/12	3/27/13	6/25/13	9/23/2013	1/30/2014
Volatile Organics Low-Level (ug/m3)	evel (ug/m3)												
1,1,1-Trichloroethane	41,000,000	7,300		0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U				
1,1,2,2-Tetrachloroethane	Ν	Ā		0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U				
1,1,2-Trichloroethane	170,000,000	29		0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U				
1,1-Dichloroethane	4,200,000	730		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
1,1-Dichloroethene	1,600,000	290		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
1,2-Dichloroethane	810	0.16		0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U				
Carbon Tetrachloride	1,500	0.68		4.0	4.0	0.41	0.37	0.51	0.47	0.46	0.41	0.44	0.43
Chloroform	920	0.18		0.2 U	0.2 U	0.2 U	0.2.0	0.2 U	0.2 U	0.21	0.2 U	0.2 U	990'0
cis-1,2-Dichloroethene	1,100,000,000	ΝΑ		0,16 U	0.16 U	0.3	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Methylene Chloride	45,000	410		1.4 U	1.4 U	2.6	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.43
Tetrachloroethene	4,000	16		0.27 U	0.27 U	0.27 U	0.27 U	U 72.0	0.068 U				
trans-1,2-Dichloroethene	510,000	88		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U				
Trichloroethene	12,000	1		0.31	0.21 U	0.39	0.21 U	0.21 U	0.21 U	0.21 U	0.26	9.0	0.054 U
Vinyl Chloride	4,800	0.93		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Notes.													

Notes:
Shading indicates a concentration above the Remediation Objective
(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater
Remediation
Objectives for the Indoor Inhalation Exposure Route-Diffusion and Advection
(b) Indoor Air Remediation Objectives
[] = Duplicate values
Illinois EPA = Illinois Environmental Protection Agency

ug/m3 = Micrograms per cubic meter U = Compound not detected NA = not available

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	Domodiation Objection	Objectives				304 Oak	304 Oak Street - Residential	ntial		8	14 W. Park S	814 W. Park Street - Residential	ıntial
	Veniediatioi	1 Objectives	Parcel Tax ID:				0813277001				081	0813277008	
	(ug)	(cilign)	Building Construction:			SI	Slab on Grade				Ba	Basement	
	Residential	Residential	Location ID:	304-IAF-1	304-IAF-1	304-IAF-1 304-IAF-2	304-IAF-2	304-SSP-1	304-SSP-2	814-IAB	814-IAB	814-SSP-1	814-SSP-1
	Soil Gas	Indoor Air	Area of Building:	1st Floor	1st Floor	Ist Floor 1st Floor	1st Floor	Below 1st Floor Below 1st Floor	Below 1st Floor	Basement		Basement Below Bsmt.	Below Bsmt.
	(<5 feet) (a)	<u>@</u>	Date Collected:	03/13/12	12/04/12	03/13/12	12/04/12	03/14/12	03/14/12	03/13/12	12/06/12	03/14/12	12/06/12
Volatile Organics Low-Level (ug/m3)	vel (ug/m3)												
1,1,1-Trichloroethane	000'009'9	5,200		2.2 [2.4]	0.22 U	3	0.22 U [0.22 U]	950 [890]	3700	0.27	0.22	140	99 [92]
1,1,2,2-Tetrachloroethane	ΑN	NA		0.27 U [0.27 U]	0.27 U	0.27 U	0.27 U 0.27 U [0.27 U]	21 U [23 U]	U 55	0.27 U	0.27 U	1.4 U	1.4 U [1.4 U]
1,1,2-Trichloroethane	170,000,000	21		0.22 U [0.22 U]	0.22 U	0.22 U	0.22 U [0.22 U]	16 U [18 U]	44 ∪	0.22 U	0.22 U	1.10	1.1 U [1.1 U]
1, 1-Dichloroethane	000'069	520		0.16 U [0.16 U]	0.16 U	0.16 U	0.16 U [0.16 U]	16 [14]	62	0.16 U	0.16 U	0.81 U	0.81 U [0.81 U]
1, 1-Dichloroethene	240,000	210		3.8 [3.7]	0.16 U	6.2	0.16 U [0.16 U]	2000 [1900]	4700	0.16 U	0.16 U	0.79 U	U 67.0] U 67.0
1,2-Dichloroethane	66	60.0		0.54 [0.56]	0.32 U	2.3	0.43 [0.34]	12 U [14 U]	32 U	0.32 U	0.32 U	0.81 U	0.81 U [0.81 U]
Carbon Tetrachloride	210	0.41		0.41 [0.44]	0.49	0.36	0.64 [0.51]	19 U [21 U]	50 U	0.42	0.41	1.3 U	1.3 U [1.3 U]
Chloroform	110	0.11		0.20 U [0.20 U]	0.3	0.2 U	1.2 [0.90]	19 [17 U]	N 6E	0.2 U	1.3	0.98 U	0.98 U [0.98 U]
cis-1,2-Dichloroethene	1,100,000,000	NA		0.16 U [0.17]	0.16 U	0.26	0.16 U [0.16 U]	12 U [13 U]	32 U	0.2	0.16 U	0.79 U	0.79 U (0.79 U
Methylene Chloride	5,600	240		2.1 [2.2]	1.4 U	12	1.4 U [1.4 U]	26 U [29 U]	U 07	1.9	1.4 U	1.7 U	1.7 U [1.7 U]
Tetrachloroethene	029	9.4		0.27 U {0.27 U]	0.27 U	0,31	0.27 U [0.27 U]	20 U [23 U]	72	0.27 U	0.27 U	1.4 U	1.4 U [1.4 U]
trans-1,2-Dichloroethene	000'58	63		0.16 U [0.16 U]	0.16 U	0.16 U	0.16 U [0.16 U]	12 U [13 U]	32 U	0.16 U	0.16 U	U 6Z:0	0.79 U [0.79 U]
Trichloroethene	1,500	0.59		1.3 [1.4]	0.21 U	1.4	1.4 0.21 U [0.21 U]	160 [140]	1700	0.41	0.21 U	2.2	2.2 [2.2]
Vinyl Chloride	290	0.28		0.20 U [0.20 U]	0.2 U	0.2.0	0.20 U [0.20 U]	7.7 U [8.6 U]	21 U	0.2 U	0.2.0	0.51 U	0.51 U [0.51 U]

Notes:

Bold indicates sub-slab data > Illinois EPA Remediation Objectives.
Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5)

(b) Indoor Air Remediation Objectives

[] = duplicate values
Illinois EPA = Illinois Environmental Protection Agency
J = Estimated concentration
NA = not available

R = The sample results are rejected as unusable. The analyte may or may not

be present in the sample.

ug/m3 = micrograms per cubic meter
U = Compound not detected

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	Domodiation	Objections		8	811 W. Morris Street - Residential	reet - Residenti	a	80	9 W. Morris	809 W. Morris Street - Residential	ntial
	Lenienidilon		Parcel Tax ID:		01813	01813277002			018	01813277003	
	infin)	2	Building Construction:		Basement	ment			Ba	Basement	
	Residential	Residential	Location ID:	811-IAB	811-IAB	811-SSP-1	811-SSP-1	809-IAB	809-IAB	809-SSP-1	809-SSP-1
	Soil Gas (<5 feet) (a)	Indoor Air (b)	Area of Building: Date Collected:	Basement 03/13/12	Basement 12/06/12	Below Bsmt 03/13/12	Below Bsmt. 12/06/12	Basement 03/09/12	Basement 12/04/12	Basement Below Bsmt. 12/04/12 03/09/12	Below Bsmt. 12/04/12
Volatile Organics Low-Level (ug/m3)	ivel (ug/m3)										
1,1,1-Trichloroethane	000'009'9	5,200		0.22 U	0.22 U	3.3	4.6	0.22 U	0.22 U	2.3	1.5
1,1,2,2-Tetrachloroethane	Ϋ́	Ą		0.27 U	0.27 U	1.4 U	1.4 U	0.27 U	0.27 U	1.4 U	1.4 U
1,1,2-Trichloroethane	170,000,000	21		0.22 U	0.22 U	1.1 U	1.1 U	0.22 U	0.22 U	1.1 U	1.1 U
1,1-Dichloroethane	000'069	520		0.16 U	0.16 U	0.81 U	0.81 U	0.16 U	0.16 U	0.81 U	0.81 U
1,1-Dichloroethene	240,000	210		0.16 U	0.16 U	U 62'0	U 62.0	0.16 U	0.16 U	0.79 U	0.79 U
1,2-Dichloroethane	66	60.0		0.32 U ⋅	0.55	0.81 U	0.81 U	9,	4	0.81 U	0.81 U
Carbon Tetrachloride	210	0.41		0.4	0.41	1.3 U	1.3 U	0.41	0.45	1.3 U	1.3 U
Chloroform	110	0.11		0.2 U	0.2.0	N 86'0	U 86.0	0.2.0	79'0	0.98 U	U 86.0
cis-1,2-Dichloroethene	1,100,000,000	ΑN		0.16 U	0.16 U	U 67.0	U 62.0	0.16 U	0.16 U	0.79 U	0.79 U
Methylene Chloride	2,600	240		1.4 U	1.4 U	11	1.7 U	2.6	1.4 U	1.7 U	1.7 U
Tetrachloroethene	920	9.4		0.27 U	0.27 U	1.4 U	4.3	0.27 U	0.27 U	1.4 U	1.4 U
trans-1,2-Dichloroethene	85,000	63		0.16 U	0.16 U	U 62.0	0.79 U	0.16 U	0.16 U	0.79 U	0.79 U
Trichloroethene	1,500	0.59		0.21 U	0.21 U	1.3	1.1 U	0.21 U	0.35	1.1 U	1.10
Vinyl Chloride	290	0.28		0.2 U	0.2 U	0.51 U	0.51 U	0.2 U	0.2 U	0.51 U	0.51 U

Bold indicates sub-slab data > Illinois EPA Remediation Objectives.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5')
(b) Indoor Air Remediation Objectives

[] = duplicate values

Illinois EPA = Illinois Environmental Protection Agency

J = Estimated concentration

NA = not available

R = The sample results are rejected as unusable. The analyte may or may not be present in the sample.

ug/m3 = mircograms per cubic meter

U = Compound not detected

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	Domodiation Objectives	Objectives			80	7 W. Morris St	807 W. Morris Street - Residential	tial	
	(Eulon)		Parcel Tax ID:			01813	01813277004		
	(fin)		Building Construction:			Basement and	Basement and Crawl Space		
	Residential Residential	Residential	Location ID:	807-IAB	807-IAB	807-SSP-1	807-SSP-1	807-SSP-2	807-SSP-2
	Soil Gas	Indoor Air	Area of Building:	Basement	Basement	Below Bsmt.	Basement Below Bsmt. Below Bsmt. Below Bsmt.	Below Bsmt.	Below Bsmt.
	(<5 feet) (a)	(g)	Date Collected:	03/07/12	12/05/12	03/07/12	12/05/12	03/07/12	12/05/12
Volatile Organics Low-Level (ug/m3)	vel (ug/m3)								
1,1,1-Trichloroethane	6,600,000	5,200		0.22 U [0.22 U]	0.22 U	38	26	30	20 J
1,1,2,2-Tetrachloroethane	ΝA	AN		0.27 U [0.27 U]	0.27 U	1.4 U	1.4 U	1.4 U	R
1,1,2-Trichloroethane	170,000,000	21		0.22 U [0.22 U]	0.22 U	1.1 U	1.10	1.10	R
1,1-Dichloroethane	000'069	520		0.16 U [0.16 U]	0.16 U	22	2.9	36	7.7 J
1,1-Dichloroethene	240,000	210		0.16 U [0.16 U]	0.16 U	0.79 U	U 62.0	0.79 U	1.1 J
1,2-Dichloroethane	66	60'0		0.32 U [0.32 U]	0.46	0.81 U	0.81 U	0.81 U	œ
Carbon Tetrachloride	210	0.41		0.43 [0.52]	0.45	1.3 U	1.2	1.3 U	ď
Chloroform	110	0.11		0.20 U [0.20 U]	0.22	U 86.0	U 86.0	0.98 U	æ
cis-1,2-Díchloroethene	1,100,000,000	NA		0.16 U [0.16 U]	0.16 U	0.79 U	0.79 U	0.79 U	2
Methylene Chloride	5,600	240		1.4 U [1.5]	1.4	1.7 U	1.7 U	1.7 U	æ
Tetrachloroethene	550	9.4		0.27 U [0.27 U]	0.27 U	1.4 U	1.4 U	1.4 U	2
frans-1,2-Dichloroethene	85,000	63		0.16 U [0.16 U]	0.16 U	0.79 U	0.79 U	0.79 U	×
Trichloroethene	1,500	65.0		0.21 U [0.21 U]	0.21 U	1.4	1.10	2.5	1.7 J
Vinyi Chloride	290	0.28		0.20 U [0.20 U]	0.2 U	0.51 U	0.51 U	0.51 U	ď

Bold indicates sub-slab data > Illinois EPA Remediation Objectives.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5)

(b) Indoor Air Remediation Objectives

[] = duplicate values Illinois EPA = Illinois Environmental Protection Agency J = Estimated concentration

NA = not available

R = The sample results are rejected as unusable. The analyte may or may not be present in the sample. ug/m3 = micrograms per cubic meter U = Compound not detected

ARCADIS

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

Residential (cf. feet) (a)		To the distance	0.11			œ	805 W. Morris Street - Residential	Street - Resid	ential			803 W. Mo.	803 W. Morris Street - Residential	ential
Residential Resi		Kemediation	Objectives	Parcel Tax ID:			0181	01813277005					01813277006	
Residential Residential Residential Residential Residential Residential Post Cation ID: 805-IAB Soil Gas Indoor Air Date Collected: 03/07/12 Basement Collected: 03/07/12 Collec		/bn)		Building Construction:			Ba	Basement				"	Slab on Grade	
Color Colo		Residential	Residential	Location ID:	1	805-IAB	805-SSP-1	805-SSP-1	805-SSP-1 805-SSP-1 805-SSP-2	805-SSP-2	803-IAB	803-IAB	803-SSP-1	803-SSP-1
(-5 feet) (a) (b) Date Collected: 03/07/12 12/06/12 Ities Low-Level (lugim3) Ethion Ethion Ethio	-	Soil Gas	Indoor Air	Area of Building:	Basement		Below Bsmt.	Below Bsmt.	Below Bsmt.	Below Bsmt.	1st Floor	1st Floor	Below 1st Floor	Below 1st Floor
vies Low-Level (ug/m3) nics Low-Level (ug/m3) ethane 6,600,000 5,200 0,22 U 0,22 U ethane 6,600,000 21 0,22 U 0,22 U ethane 170,000,000 21 0,22 U 0,22 U rane 240,000 50 210 0,16 U 0,16 U rane 99 0,09 0,32 U 0,16 U 0,16 U rane 99 0,09 0,32 U 0,16 U 0,16 U rane 1,100,000,000 NA 0,41 0,47 0,27 U respectivene 5,600 240 1,4 U 1,4 U respectivene 5,500 240 0,15 U 0,15 U respectivene 5,500 94 0,27 U 0,27 U ser 1,500 0,59 0,21 U 0,27 U ser 1,500 0,59 0,21 U 0,27 U ser 1,500 0,59 0,21 U 0,21 U ser 1,500 0,59		(<5 feet) (a)	(a)	Date Collected:	03/07/12	12/06/12	03/07/12	12/06/12	03/07/12	12/06/12	03/13/12	12/06/12	03/14/12	12/06/12
ethane 6,600,000 5,200 0.22 U 0.22 U 0.02 U life of the life of th	tile Organics Low-Lev	rel (ug/m3)												
NA NA 0.27 U 0.27 U ethane 170,000,000 21 0.22 U 0.22 U anne 690,000 210 0.16 U 0.16 U inne 99 0.09 0.16 U 0.16 U inneride 210 0.041 0.16 U 0.16 U inneride 210 0.41 0.47 0.47 inneride 1.100,000,000 0.41 0.41 0.47 oethere 1.100,000,000 240 0.16 U 0.16 U order 550 94 0.27 U 0.27 U order 550 94 0.27 U 0.27 U order 550 94 0.21 U 0.21 U order 1.500 0.59 0.21 U 0.21 U s 1,500 0.29 0.21 U 0.24 order 0.21 U 0.21 U 0.21 U	-Trichloroethane	6,600,000	5,200		0.22 U	0.22 U	52	38	1.1 U	2.8	0.22 U	0.22 U	1.10	1.1 U
ethane 170,000,000 21 0.22 U 0.22 U rane 690,000 520 0.16 U 0.16 U rene 240,000 210 0.16 U 0.16 U rane 290,000 0.09 0.32 U 0.16 U rane 210 0.41 0.11 U 0.16 U rane 210 0.41 0.41 0.47 rane 110,000,000 0.41 0.41 0.47 orderline 110,000,000 0.44 0.16 U 0.16 U orderline 5500 9.4 0.17 U 0.27 U orderline 550 9.4 0.27 U 0.27 U orderline 550 9.4 0.27 U 0.27 U orderline 1500 0.59 0.21 U 0.21 U orderline 1,500 0.39 0.21 U 0.21 U orderline 1,500 0.39 0.21 U 0.21 U	,2-Tetrachloroethane	ĄN	ΑΝ		0.27 U	0.27 U	1.4 U	1.4 U	1.4 U	1.4 U	0.27 U	0.27 U	1.4 U	1.4 U
rane 690,000 520 0.16 U 0.16 U Pene 240,000 210 0.16 U 0.16 U Rane 99 0.09 0.32 U 0.32 U Inforde 170 0.41 0.41 0.47 Inforde 1.10 0.11 0.2 U 0.35 U Information 1.00,000,000 NA 0.16 U 0.16 U Information 5,600 240 1.4 U 1.4 U Information 650 9.4 0.27 U 0.27 U Information 63 0.21 U 0.16 U Information 0.16 U 0.16 U 0.16 U Information 0.16 U 0.21 U 0.21 U Information 0.21 U 0.21 U 0.21 U Information 0.21 U 0.21 U 0.21 U	-Trichloroethane	170,000,000	21:		0.22 U	0.22 U	1.10	1.1 U	1.1 U	1.1 U	0.22 U	0.22 U	1.10	1.10
tene 240,000 210 0.16 U 0.16 U nane 99 0.09 0.32 U 0.32 U hloride 210 0.41 0.41 0.47 nethene 1.100,000,000 NA 0.16 U 0.16 U order 5,600 240 1.4 U 1.4 U ene 550 9.4 0.27 U 0.27 U orcethene 85,000 63 0.21 U 0.16 U ene 1,500 0.59 0.21 U 0.24 U	Jichloroethane	000'069	520		0.16 U	0.16 U	4.1	2.4	0.81 U	0.81 U	0.16 U	0.16 U	0.81 U	0.81 U
tane 99 0.09 0.32 U 0.32 U bloride 210 0.41 0.47 0.47 cethere 1,100,000,000 NA 0.16 U 0.16 U 0.16 U ochere 5,600 240 14 U 14 U 14 U ene 550 94 0.27 U 0.27 U 0.27 U oroethene 85,000 63 0.16 U 0.16 U 0.16 U ene 1,500 0.59 0.21 U 0.24 U 0.24 U	ichloroethene	240,000	210		0.16 U	0.16 U	0.79 U	U 62.0	0.79 U	0.79 U	0.16 U	0.16 U	U 67.0	0.79 U
Noride 210 0.41 0.47 0.47 oetherne 1,100,000,000 0,11 0,20 0,36 oetherne 1,100,000,000 0,14 0,16 U 0,16 U order 5600 240 1,4 U 1,4 U 1,4 U ene 550 9,4 0,27 U 0,27 U 0,27 U orcethene 85,000 63 0,16 U 0,16 U 0,16 U s 1,500 0,59 0,21 U 0,21 U 0,21 U s 0,01 0,21 U 0,21 U 0,21 U	Dichloroethane	66	60.0		0.32 U	0.32 U	0.81 U	0.81 U	0.81 U	0.81 U	0.30	1.1	0.81 U	0.81 U
oethene 1,100,000,000 NA 0.2 U 0.36 onde 1,100,000,000 NA 0.16 U 0.16 U onde 5,600 240 1,4 U 1,4 U ene 550 9,4 0.27 U 0.27 U oroethene 85,000 63 0.16 U 0.16 U e 1,500 0.59 0.21 U 0.24 c 0,21 U 0.21 U 0.24	on Tetrachloride	210	0.41		0.41	0.47	1.3 U	1.3 U	1.3 U	1.3 U	0.47	0.46	1.3 U	1.3 U
oethere 1,100,000,000 NA 0.16 U 0.16 U orde 5,600 240 1.4 U 1.4 U ene 550 9.4 0.27 U 0.27 U oroethene 85,000 63 0.16 U 0.16 U e 1,500 0.59 0.21 U 0.24	Toform	110	0.11		0.2 U	0.36	0.98 U	U 86.0	1.6	U 86.0	0.43	0.2 U	U 86.0	0.98 U
oride 5,600 240 1.4 U 1.4 U ene 550 94 0.27 U 0.27 U oroethene 85,000 63 0.16 U 0.16 U e 1,500 0.59 0.21 U 0.24 200 0.28 0.21 U 0.21		1,100,000,000	₹		0.16 U	0.16 U	0.79 U	0.79 U	0.79 U	0.79 U	0.16 U	0.16 U	U 62.0	0.79 U
ene 550 94 0.27 U 0.25 U 0.16 U 0.16 U 0.16 U 0.24 E 0.20 0.28 E 0.21 U 0.24 E 0.20 E 0.28 E 0.21 U 0.24 E 0.28 E 0.21 U 0.24 E 0.28 E	ylene Chloride	5,600	240		1.4 U	1.4 U	1.7 U	1.7 U	1.7 U	1.7 U	1.4 U	1.7	1.7 U	1.7 U
oroethene 85.000 63 0.16 U 0.16 U e 1,500 0.59 0.21 U 0.24 U 2 on 2 on 0.21 U 0.21 U	chloroethene	550	9.4		0.27 U	0.27 U	2.2	3.6	1.4 U	1.4 U	22	0.55	3.7	4.6
e 620 021 021 621 621 621 621 621 621 621 621 621 6	-1,2-Dichloroethene	85,000	63		0.16 U	0.16 U	U 62.0	U 67.0	U 62'0	U 62'0	0.16 U	0.16 U	U 62'0	0.79 U
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	loroethene	1,500	0.59		0.21 U	0.24	2	2.6	1.1 U	1.1 U	0.21 U	0.21 U	1.10	1.1 U
0.20	Vinyl Chloride	290	0.28		0.2 U	0.2 U	0.51 U	0.51 U	2.1	0.51 U	0.2 U	0.2 U	0.51 U	0.51 U

Bold indicates sub-slab data > Illinois EPA Remediation Objectives.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742. Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5)
(b) Indoor Air Remediation Objectives

[] = duplicate values

Illinois EPA = Illinois Environmental Protection Agency
J = Estimated concentration
NA = not available
R = The sample results are rejected as unusable. The analyte may or may not be present in the sample.
Up/m3 = micrograms per cubic meter
U = Compound not detected

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	Domodiation Objectives	Objectives				101 W. Morris St	801 W. Morris Street - Residential		
	(mainermanner)	Objectives	Parcel Tax ID:			01813	01813277007		
	infant.		Building Construction:			Basement and	Basement and Crawl Space		
	Residential	Residential	Location ID:	801-IAB	801-IAB	801-IAF	801-IAF	801-SSP-1	801-SSP-1
	Soil Gas	Indoor Air	Area of Building:	Basement	Basement	1st Floor	1st Floor	Below Bsmt.	Below Bsmt.
	(<5 feet) (a)	<u>(a</u>	Date Collected:	03/09/12	12/04/12	03/09/12	12/04/12	03/09/12	12/04/12
Volatile Organics Low-Level (ug/m3)	vel (ug/m3)								
1,1,1-Trichloroethane	6,600,000	5,200		0.22 U	0.22 U [0.22 U]	0.22 U	0.22 U	2.1	2.7
1,1,2,2-Tetrachloroethane	ΑN	NA		1.8	0.27 U [0.27 U]	0.27 U	0.27 U	1.4 U	1.4 U
1,1,2-Trichloroethane	170,000,000	21		0.22 U	0.22 U [0.22 U]	0.22 U	0.22 U	1.10	1.10
1,1-Dichloroethane	000'069	520		0.16 U	0.16 U [0.16 U]	0.16 U	0.16 U	0.81 U	0.81 U
1,1-Dichloroethene	240,000	210		0.16 U	0.16 U [0.16 U]	0.16 U	0.16 U	0.79 U	0.79 U
1,2-Dichloroethane	66	60.0		0.32 U	[68.0] 77.0	0.41	6.1	0.81 U	0.81 U
Carbon Tetrachloride	210	0.41		0.43	0.44 [0.46]	0.42	9.0	1.3 U	1.3 U
Chloroform	110	0.11		0.2.0	0.34 [0.38]	0.2 U	0.87	U 86.0	U 86.0
cís-1,2-Dichloroethene	1,100,000,000	NA		0.16 U	0.16 U [0.16 U]	0.16 U	0.16 U	0.79 U	U 67.0
Methylene Chloride	5,600	240		1,4 U	1.4 U [1.4 U]	1.4 U	1.4 U	1.7 U	1.7 U
Tetrachloroethene	550	9.4		0.27 U	0.27 U [0.27 U]	0.27 U	0.81	1.4	2.1
frans-1,2-Dichloroethene	85,000	63		0.16 U	0.16 U [0.16 U]	0.16 U	0.16 U	0.79 U	U 67.0
Trichloroethene	1,500	65.0		0.41	0.21 U [0.21 U]	0.21 U	0.21 U	21	37
Vinyl Chloride	290	0.28		0.2 U	0.20 U [0.20 U]	0.2 U	0.2 U	0.51 U	0.51 U

Bold indicates sub-slab data > Illinois EPA Remediation Objectives. Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5)
(b) Indoor Air Remediation Objectives

Illinois EPA = Illinois Environmental Protection Agency J = Estimated concentration

[] = duplicate values

NA = not available

R = The sample results are rejected as unusable. The analyte may or may not be present in the sample. ug/m3 = micrograms per cubic meter U = Compound not detected

Table 10
Residential Indoor Air, Sub-Slab Soil Gas, and Ambient Air Sample Results
GE Morrison Facility
Morrison, Illinois

	- Compa	0.11			810 W Park Street - Residential	t - Residential								
	Remediation Objectives	Cojectives	Parcel Tax ID:		0813277009	1009				Ā	Ambient Air			
	(cui/gu)		Building Construction:		Slab on Grade	Srade								
_	Residential	Residential	Location ID:	810-SG-1	810-SG-2	810-IAF-1	810-SSP-1	AMB-1	AMB-1	AMB	AMB	AMB-1	AMB-2	AMB-1
	Soil Gas	Indoor Air	Area of Building:	of Building: Exterior Soil Gas Exterior Soil Gas	Exterior Soil Gas	1st Floor	Below 1st Floor					-	-	
	(<5 feet) (a)	æ	Date Collected:	12/09/13	12/09/13	12/10/13	12/11/13	03/07/12	03/07/12 03/09/12 03/13/12 03/14/12 12/04/12 12/06/12 12/10/13	03/13/12	03/14/12	12/04/12	12/06/12	12/10/13
Volatile Organics Low-Level (ug/m3)	evel (ug/m3)													
1,1,1-Trichloroethane	6,600,000	5,200		1.10	1.1 U	1.1 U [1.1 U]	1.1 U [1.1 U] 0.22 U		0.22 U 0.22 U 0.22 U	0.22 U		0.22 U	0.22 U	0.22 U
1,1,2,2-Tetrachloroethane	NA	AN		0.27 U	1.7	0.27 U [0.27 U]	U.72.0 U.7	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	H	0.27 U
1,1,2-Trichloroethane	170,000,000	21		0.22 U	0.22 U	0.22 U [0.22 U]	0.22 U [0.22 U]	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1,1-Dichloroethane	000'069	520		0.16 U	0.16 U	0.16 U [0.16 U]	0.16 U [0.16 U] 0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,1-Dichloroethene	240,000	210		0.16 U	0.16 U	0.16 U [0.16 U]	0.16 U [0.16 U] 0.16 U [0.16 U] 0.16 U		0.16 U 0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
1,2-Dichloroethane	66	60'0		0.32 U	0.32 U	0.32 U [0.32 U]	0.32 U [0.32 U] 0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Carbon Tetrachloride	210	0.41		1.3 U	1.3 U	0.37 [0.42]	1.3 U [1.3 U]	4.0	9.0	0.41	0.37	0.51	0.47	0.38
Chloroform	110	0.11		0.2 U	0.2 U	0.20 U [0.20 U]	0.20 U [0.20 U]	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	1,100,000,000	ΥN		0.16 U	0.16 U	0.16 U [0.17]	0.16 U [0.17]	0.16 U	0.16 U	0.3	0.16 U	0.16 U	0.16 U	0.16 U
Methylene Chloride	5,600	240		1.7 U	1 <i>3</i> U	1.4 U [1.4 U]	1.4 U [1.4 U]	1.4 U	1.4 U	5.6	1.4 U	1.4 U	1.4 U	1.4 U
Tetrachloroethene	550	9.4		0.27 U	0.27 U	0.27 U [0.27 U]	0.27 U [0.27 U [0.27 U [0.27 U]	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
trans-1,2-Dichloroethene	85,000	63		0.16 U	0.16 U	0.16 U [0.16 U]	0.16 U [0.16 U] 0.16 U [0.16 U]	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Trichloroethene	1,500	0.59		0.21 U	0.21 U	2.1 U [2.1 U]	2.1 U [2.1 U]	0.31	0.21 U	0.39	0.21 U	0.21 U 0.21 U		0.21 U
Vinyl Chloride	290	0.28		0.2 U	0.2 U	0.20 U [0.20 U]	0.20 U [0.20 U] 0.20 U [0.20 U]	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Notes										1				

Notes: Bold indicates sub-slab data > Illinois EPA Remediation Objectives.

Shading indicates a concentration above the Remediation Objective

(a) Illinois EPA Section 742, Appendix B, Table H - Tier 1 Groundwater Remediation Objectives for the Indoor Inhalation Exposure Route - Diffusion and Advection (Sub-Slab = <5)
(b) Indoor Air Remediation Objectives

[] = duplicate values

Illinois EPA = Illinois Environmental Protection Agency J = Estimated concentration NA = not available

R = The sample results are rejected as unusable. The analyte may or may not be present in the sample. Up and a micrograms per cubic meter U = Compound not detected

Exhibit 11

Waste Disposal and Chemical Purchase Matrices Included with GE's Response to the U.S. EPA's 104(e) Information Request (dated August 21, 1987)

ļ	2		44000	14260	26056	2244	25	٠			28560	153003	990559
	1986		\$1718	106142	36440	9	1007	•	2825		578971	262311	1536261
ļ	282		27894	2350	\$1889	2788		ŝ			Lokum	275575	1245782
į	z		1967	142162 34566	25126 1224	5236 2618		35			Daksom	22000	1243309
	2		82 22	22966 12966 1656	24235	10474		32			Unimore	12211	87249
	22	31500		82438		4724		\$		i	Linknown Unknown	Unkaomo	Unbeper
	Ē	\$2852						.		11998	thlead	Shtoom .	Unhane
	2	94080						288.		140778	Unknoon	taknom	Cateon
	K61	12765		•	,			Whitness		Setura	Unkaber	Untrom	Unknows
11. 18.78.11 28.	1978	90939						telmosh		Ukhora	Ent nove	Uhknown	gatrom
SCHOOL STATES	E	0000						Untapen		and the second	Ushnoss	thenous	Usknous
G.E. MORB WASTE DIS	126	SSSS						Volasus Interes		Uskapen	Untrown	Unknown	threeso
	25.	35791						Unkanen		Untroom	90750 Unitrosa	Introve	intaper.
	197	1288		•				Catro	Entsom.	ltskadera	8 278	Unkeom	Unkrow
	1973	Unkasun						Chtroca	Berkadus	Cohese	Entropes	Moknow	Potnom
	1972	Unincus Unincus Unitasm						thetraum	Üokngam	Unknom	Votrom Untrom	Thisom	Bakaom
	151	Chkeoun						Unitrom	Unktoped	Cistration	Uchnoss.	Landfill Unknows	Ustrom
	150 ACT 250	Landfill			in in	KYIRcinerate	. necessis		Reclais Landfill	Landfill Landfill	Landill Foel Burn Keclasia	Landfill	[sedfi]]
	ABBRESS	ndfiltarrisan, IL Sheffield, IL	Est. Inc. Elective J. Ferial Discount of February II. February III. F	20 20 20 20 20 20 20 20 20 20 20 20 20 2					Safety Kleen Elain, IL Whiteside Co. Landillorisan, IL	Whiteside to, Landisburison, IL U.S. Ecology	Whiteside Co. Landisforrison, II G.E. Horrison, II M.D.R.C.A. K.Cook, II	Mileride Co. Landfillarrism.il.	Uniteside Co. Landfillarrison, IL
	DESTURATION	mitraide fo. La	E.S.L. Inc. Fronta Disposal	Safety files Safety files	S.Safety Kires				Safety Kleen Bhiteside Do. L.	Witeside Ca. L U.S. Ecology	Miteside Co. 1 5.5. A.D.R.C.A.	Wileside Co. L	Witeside Co. L
	BASTE DESCRIPTION	HAZARBUS Hastewaler Treatornt Studge		Easte 1, 1, 1-Trichlorocthene Safety Kleen	Hazardous Hasta Liquid, M.G. S.Safety Kleeb	irikoan Kaste Ethyl: Modiol		Naste Paint-Mejaled Balefian Waste Mercury, Metallic	Naste Trichloroethylene	Maste Salvent M.D.S. ITEE,FPEAN	MAR-HIPACOUS Maste Off N.O.S.	Incinutator Beloc	Plastic Scrap

AUNT: "Unknown" weath waste disponed but quantity is not known. Nicht spaces indicate mo waste disposed. To the best of our knowledge this inforation is frue and correct.

	2 :	,000	28 25 25 25		2	8	80 80 80 80 80 80 80 80 80 80 80 80 80 8	8	3	3	BĒ		*	<u> </u>	223	Ē	
		r. 050				TS BEDO		822	27.26	5821	25		•	8 3	95	14187	
		o 00°				201100		92	8		សជ		•	8	2365	200	
		วจจ				334465		270	2200	8	83		•	36	23.65	24752	
		n 000				22		#75	1	8	uk		•.	25	25565	24300	•
		° 00			9104	404	200	3360	800	2	= 8		÷	5 5	215.66	21825	o',
		o 00 k			27,64.80	276488	31050	25 25 25 25	3		4		*	\$	986	2368	4.4.
		اهه		170330	29458	207798	8	ää	1365	8	\$		22	Ä	≅ £	HIS	Ť
MIRIT		م و الج				281829	27938	7020	2000	*	ងន្ត		55	E:	i Mi	3305	,
(1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		器幕の		0/2002		0/2002		6736	6756	Ħ	eğ		\$ <u>\$</u>	Ē	20,000	2002	ii Ž
G.E. KORRISON, N. CHENICAL PURCHASE	1571	35±(SE SE SE SE SE SE SE SE SE SE SE SE SE S	21,526		317500	#13	3	38	£	33		. •	24310	37	34746	
	1416	ጀላባ		286,390		284.370					222		•	17710	£	950	
	56	0 蓋4.	2002	24034		240340	\$772	3	3	25	HER		4	55	2 3 2 3	13915	١.
	161	0 g r	5 15 S	886S		2005	35.50	750	ßĚ	183	노름류	2230	9019	91	55	13805	; 14
-	1973	· Bo	9 2 2 2 2 2 3	228590	47610	276190	200	3519	35.30	€	22	216980	•		S S S S S S S S S S S S S S S S S S S	SEE.	:
	ENTTS.	ere	Š	*	ĭ	*	¥	귏	7	3	33	ī	EE	7	es:		: :: P3
	Es VENDOR	1 bre Sheeical McCesson Chemical Orfers Chemical	Tokes Chesical Fiting Chesical Total	2 Der Cheeical	McKessoo Chemical	Witten Chesteri	3 AcKesson Chenical	4 Barton Solvents Eckesson Chemical	Viking Chesical	5 Vittoe Chesical	Dern Chebical Barton Solvents Total	7 Jos Desical	8 BcKessen Chemical Viking Chemical Total	9 Villing Chasical	Sonneborn fork Valley Bil Co.	McKesson Chemical Total	6.1 : 7.58/4
	23003							-									
	CHENICAL	Plating Chesicals		1.1.1-Trichlaroethas			SHELK IF and 185	Ethyl Alcohol	•	Paint Belated Raterial		frichloroethylens	Perchloroethylese	. 110			

Exhibit 12

Map of GE Plant Showing Building #15 (GE-1) and Building #14

